众所周知图论中网络流问题最重要的就是建图了,如果可以建图成功了那么题目也就自然而然的做出来了,今天介绍的是拆点法建图,首先来看例题洛谷P1402
题目描述
XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化。由于很多来住店的旅客有自己喜好的房间色调、阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜。
有一天来了n个客人,每个客人说出了自己喜欢哪些房间,喜欢哪道菜。但是很不幸,可能做不到让所有顾客满意(满意的条件是住进喜欢的房间,吃到喜欢的菜)。
这里要怎么分配,能使最多顾客满意呢?
输入格式
第一行给出三个正整数表示n,p,q(<=100)。
之后n行,每行p个数包含0或1,第i个数表示喜不喜欢第i个房间(1表示喜欢,0表示不喜欢)。
之后n行,每行q个数,表示喜不喜欢第i道菜。
输出格式
最大的顾客满意数。
输入输出样例
输入
2 2 2
1 0
1 0
1 1
1 1
输出
1
题目大意就是说有n个A类点p个B类点q个C类点一个A类点匹配一个B类点一个C类点视为匹配成功,看起来有点想匈牙利的题,当然也可以用最大流来写,’
那么我们也都不难想出这样一个建图方法
那么你们有没有考虑这样一种情况呢.?
正常情况下只能匹配一个顾客,但是你会发现跑一边最大流的话就会是2,那么如何处理这种情况呢?,划重点了,拆点法建图也就是这样
这样是不是就完全解决了
接下来上代码
/*
* ┏┓ ┏┓+ +
* ┏┛┻━━━━━━━┛┻┓ + +
* ┃ ┃
* ┃ ━ ┃ ++ + + +
* █████━█████ ┃+
* ┃ ┃ +
* ┃ ┻ ┃
* ┃ ┃ + +
* ┗━━┓ ┏━┛
* ┃ ┃
* ┃ ┃ + + + +
* ┃ ┃ Code is far away from bug with the animal protecting
* ┃ ┃ + 神兽保佑,代码无bug
* ┃ ┃
* ┃ ┃ +
* ┃ ┗━━━┓ + +
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━━━┳┓┏┛ + + + +
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛+ + + +
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<string>
#include<vector>
#include<cmath>
#include<functional>
#include<stack>
using namespace std;
const int maxn = 255;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to, next, w;
}edg[MAXN];
int head[MAXN], dep[MAXN], n, p, q, cnt = 0;
void init()
{
memset(head, -1, sizeof(head));
cnt = 0;
}
void Add_edge(int u, int v, int w)
{
edg[cnt].to = v;
edg[cnt].w = w;
edg[cnt].next = head[u];
head[u] = cnt++;
}
bool Bfs(int s, int t)
{
memset(dep, 0, sizeof(dep));
queue<int> q;
while(!q.empty()) q.pop();
dep[s] = 1;
q.push(s);
while(!q.empty())
{
int p = q.front();
q.pop();
for(int i = head[p]; i != -1; i = edg[i].next)
{
int w = edg[i].w; int v = edg[i].to;
if(w && !dep[v])
{
dep[v] = dep[p] + 1;
q.push(v);
if(v == t)
return true;
}
}
}
if(dep[t])
return true;
else
return false;
}
int DFS(int s, int mw, int t)
{
if(s == t)
return mw;
int res = 0;
for(int i = head[s]; i != -1 && res < mw; i = edg[i].next)
{
int v = edg[i].to;
if(edg[i].w && dep[v] == dep[s] + 1)
{
int k = DFS(v, min(mw - res, edg[i].w), t);
if(!k) dep[v] = 0;
edg[i].w -= k;
edg[i^1].w += k;
res += k;
}
}
return res;
}
int main()
{
scanf("%d %d %d", &n, &p, &q);
init();
int s = 0, t = n + p + q + n + 1;
for(int i = 1; i <= p; ++i)// House
{
Add_edge(0, i, 1);
Add_edge(i, 0, 0);
}
for(int i = 1; i <= p; ++i)// Menu
{
Add_edge(i + p, t, 1);
Add_edge(t, i + p, 0);
}
for(int i = 1; i <= n; ++i)// Double people
{
Add_edge(i + p + q, i + p + q + n, 1);
Add_edge(i + p + q + n, i + p + q, 0);
}
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= p; ++j)
{
int x;
scanf("%d", &x);
if(x == 1)
{
Add_edge(j, i + p + q, 1);
Add_edge(i + p + q, j, 0);
}
}
}
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= p; ++j)
{
int x;
scanf("%d", &x);
if(x == 1)
{
Add_edge(i + n + p + q, p + j, 1);
Add_edge(p + j, i + n + p + q, 0);
}
}
}
int tot = 0;
while(Bfs(s, t))
{
while(int d = DFS(s, INF, t))
tot += d;
}
printf("%d\n", tot);
}