方法一:递归
利用二叉搜索树的性质,左子树的值小于根节点,右子树的值大于根节点。
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
//p,q都在根节点右侧
if(p->val > root->val && q->val > root->val)
return lowestCommonAncestor(root->right,p,q);
//p,q都在根节点左侧
else if(p->val < root->val && q->val < root->val)
return lowestCommonAncestor(root->left,p,q);
//否侧p,q为根节点,或者p,q分别在根节点左右侧
else
return root;
}
};
复杂度分析
时间复杂度:O(N)
其中 N 为 BST 中节点的个数,在最坏的情况下我们可能需要访问 BST 中所有的节点。
空间复杂度:O(N)
所需开辟的额外空间主要是递归栈产生的,之所以是 N 是因为 BST 的高度为 N。
方法二:迭代
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
TreeNode* rt=root;
while(rt){
if(p->val>rt->val && q->val>rt->val)
rt=rt->right;
else if(p->val<rt->val && q->val<rt->val)
rt=rt->left;
else
return rt;
}
return NULL;
}
};
复杂度分析
时间复杂度:O(N)
其中 N 为 BST 中节点的个数,在最坏的情况下我们可能需要遍历 BST 中所有的节点。
空间复杂度:O(1)