复杂数据结构——堆,队列,栈,链表,二叉树,有向图(一)

1.

     进行排序的时候使用较多,重要应用:优先队列
import heapq
n=[8,3,9]
heap=[]
heapq.heappush(heap,1)
#[1]
for i in range(n):
    heapq.heappush(heap,i)
    #自动排序
heapq.heappop(heap)
    #弹出最小元素
#ranheap=[1,2,5,4,3,2,10,9]
ranheap=[1,2,5,4,3,2,10,9]
heapq.heapify(ranheap)#列表转换成堆
print(heapq.nsmallest(4,ranheap))#输出四个最小值

值得注意的是,堆是二叉树,也就是说排序排成一个二叉树的形式,最后得到如下图的形式。
在这里插入图片描述

2.队列

     先进先出,后进后出
import queue

q=queue.Queue()
q.put(1)
q.put(3)
q.put(2)
#deque([1, 3, 2])
q.get()
#deque([ 3, 2])
print(q.queue)
#还提供后进先出
qq = queue.LifoQueue()
qq.put(1)
qq.put(2)
qq.put(3)
qq.put(2)
qq.put(6)
qq.put(5)
print(qq.queue)
qq.get()
print(qq.queue)#5出去了
#以及优先级队列
priq = queue.PriorityQueue()
priq.put(3)
priq.put(8)
priq.put(7)
priq.put(5)
print(priq.queue)
priq.put(1)
print(priq.queue)
#[3, 5, 7, 8]
#[1, 3, 7, 8, 5]
class PriorityQueue(Queue):
    def _init(self, maxsize):
        self.queue = []

    def _qsize(self):
        return len(self.queue)

    def _put(self, item):
        heappush(self.queue, item)

    def _get(self):
        return heappop(self.queue)

可见优先级这一块也是用到了块,也就是排序是用二叉树排列,用get函数时也会进行在再一次排序
3.

     后进先出**或**先进后出
     在Python中列表本身就可以实现栈的基本操作,比如入栈类似于append(),出栈类似于pop函数,要是用C语言的话就是另一种感觉了。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Love And Program

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值