教你高效下载时间序列Prophet模型

本文详细介绍Prophet库的安装步骤及常见错误处理方法,并提供一个实战案例演示如何使用Prophet进行时间序列预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👦👦一个帅气的boy,你可以叫我Love And Program
🖱 ⌨个人主页:Love And Program的个人主页
💖💖如果对你有帮助的话希望三连💨💨支持一下博主

在这里插入图片描述

🤪🤪前言

       莫名其妙成了数据分析师,我一直有着既来之则安之的原则,既然如此,那我就先学这一块呗;我的第一项任务:用时间序列Prophet模型建模,这东西不难,唯一一个缺点就是...安装太麻烦,报错更是离谱!!

👏👏正文

报错

error: command C:\\Program Files (x86)\\Microsoft Visual Studio 14.0\\VC\\BIN\\x86_amd64\\link.exe
error: command 'D:\\Microsoft Visual Studio\\2017\\Professional\\VC\\Tools\\MSVC\\14.16.27023\\bin\\
 fatal error C1001: 编译器中发生内部错误。     (编译器文件“msc1.cpp”,第 1518)      要解决此问题,请尝试简化或更改上面所列位置附近的程序。     
warning C4244: “初始化”: 从“Eigen::EigenBase<Derived>: :Index”转换到“int”,可能丢失数据           with

前提

一定要先安好这个才能进入下一步。

pip install pystan==2.19.1.1

Prophet安装事宜

       首先直接pip install肯定是不行,要真这么简单我也不会专门写个这个,最高效的办法是什么?请直接🖱进入pypi网页下载,选择最新的prophet 1.0.1版本进行下载。
       下载完成后我们打开安装环境,无论是cmd还是Anaconda,一定要把这个包拖到你想要的使用的环境中解压使用,找到环境所在位置如下图,
在这里插入图片描述
在这里插入图片描述

进入site-packages文件夹解压后可以看见压缩包中的架构

在这里插入图片描述
打开命令提示符,必须使用命令对setup.py进行操作

#python setup.py build#这一条可以试试,我运行没成功,但是因为好像已经编译过
#直接用下一条就可以安装成功
python setup.py install

直接运行成功,我遇见一个小小的插曲

Importing plotly failed. Interactive plots will not work.

直接安装对应库即可

pip install plotly 

示例

源码在这,里面例子可以自己尝试一下,其主要功能我可以简述一下:使用神经网络来查找一组指定属性其他属性之间的关系,它可用于从更简单的属性中预测难以预料或难以计算的属性。

import pandas as pd
from prophet.plot import plot_plotly, plot_components_plotly
from prophet import Prophet
df = pd.read_csv('../examples/example_wp_log_peyton_manning.csv')
print(df.head())
m = Prophet()
m.fit(df)
future = m.make_future_dataframe(periods=365)
print(future.tail())
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

fig1 = m.plot(forecast)
fig2 = m.plot_components(forecast)
plot_plotly(m, forecast)
plot_components_plotly(m, forecast)

       于是,这个号称最难安装的库一上午就安完了,最后这个方法我甚至就用了几分钟,看别人的又是编译器版本太低啥啥的都不行。
       对你有帮助的话欢迎支持我,对我点赞+收藏即可🥰🥰
### 如何下载和安装 Facebook Prophet 库 #### Python 环境下的安装方法 对于 Python 用户,可以通过 `conda` 或者 `pip` 来完成 Prophet 的安装。 1. **通过 Conda 安装** 使用 Anaconda 配置环境是一种推荐的方式,因为它可以更好地管理依赖关系并减少冲突。运行以下命令即可完成安装: ```bash conda install -c conda-forge prophet ``` 这种方式适用于大多数主流操作系统,并能有效解决编译错误等问题[^2]。 2. **通过 Pip 安装** 如果不使用 Conda,则可以直接利用 `pip` 工具来安装 Prophet。然而需要注意的是,在某些 Linux 发行版上可能会遇到 GCC 编译器相关的报错(如 CentOS 7 中报告的 “command 'gcc' failed with exit status 1”)。因此建议先确认开发工具链已正确安装后再执行如下命令: ```bash pip install prophet ``` 若发生上述提到的 gcc 错误提示,请参照特定平台文档补充必要的构建支持文件[^3]。 #### R 环境中的安装指导 除了 Python 外,R 语言同样提供了对 Prophet 的良好兼容性。按照官方指引操作可顺利完成部署: ```r if (!requireNamespace("devtools")) { install.packages("devtools") } devtools::install_github("stan-dev/rstan", ref = "develop") install.packages('prophet') ``` 此脚本片段展示了如何借助 GitHub 上最新的 rstan 开发分支以及 CRAN 提供的标准流程实现整个过程自动化处理。 #### 调试常见问题 当尝试手动搭建时难免会碰到各种异常状况;比如缺少系统级头文件或者动态链接库版本不符等情况均可能导致失败告警。此时查阅相关社区讨论帖往往能够找到解决方案——例如针对不同发行板的具体调整措施已被详尽记录于参考资料之中[^4]。 ```python import prophet print(prophet.__version__) ``` 验证模块成功加载后打印其当前可用版本号作为最后一步测试手段之一。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Love And Program

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值