在Windows环境下的rknn-toolkit环境搭建

在Windows环境下的rknn-toolkit环境搭建

最近需要使用RK3566来跑YOLOv5。想要实现目标就需要使用rknn-toolkit工具将模型转化成可以运行在rk3588的NPU上的模型。只是转换模型的话,没有必要使用GPU,所以我这里安装的是CPU版的,所需的组件按照requirements-cpu.txt中的要求安装。

一、准备工作

  1. 安装好conda,我是用的是anaconda,miniconda应该也可以。
  2. 下载rknn_toolkit的轮子。可以直接在瑞芯微的git仓库中下载,地址为:https://github.com/rockchip-linux/rknn-toolkit/releases。我这里下载的是1.7.1版本的。没试过1.7.3版本,1.7.5版本就不支持RK3566了。选择rknn-toolkit-v1.7.1-packages.zip下载,之后解压,将里面的rknn_toolkit-1.7.1-cp36-cp36m-win_amd64.whl复制到conda目录下的pkgs目录里面。
  3. 下载torch和torchvision。rknn-toolkit官方要求的版本是torch==1.5.1和torchvision==0.4.0。可以直接在pytorch官方目录下下载,地址为:https://download.pytorch.org/whl/torch_stable.html。我这里下载的是torch-1.6.0+cpu-cp36-cp36m-win_amd64.whl和torchvision-0.7.0+cpu-cp36-cp36m-win_amd64.whl。这两个轮子也要放到pkgs目录下面。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值