数学建模——人口增长模型的matlab实现以及对2010年人口预测

matlab 同时被 2 个专栏收录
7 篇文章 1 订阅
5 篇文章 12 订阅

运行软件:MATLAB R2012a

实验数据

年份17901800181018201830184018501860
人口/百万3.95.37.29.612.917.123.231.4
增长率/10年0.29490.31130.29860.29690.29070.30120.30820.2452
年份18701880189019001910192019301940
人口/百万38.650.262.976.092.0105.7122.8131.7
增长率/10年0.24350.24200.20510.19140.16140.14570.10590.1059
年份1950196019701980199020002010
人口/百万150.7179.3203.2226.5248.7281.4308.7
增长率/10年0.15790.14640.11610.10040.11040.1349

指数增长模型

满足人口增长的微分方程和初始条件为:
在这里插入图片描述
利用函数dsolve()可得:
在这里插入图片描述

指数增长模型:方法一

根据已知数据对模型的参数进行估计又称为数据拟合。
对下面的这个公式同时取对数
在这里插入图片描述
可得
在这里插入图片描述
t:代表年份1970取0,依次类推
x:人口数量,实验数据已知
根据求出的公式可以求出y;然后利用polyfit()函数求出r,a的值;当a求出来时,根据上面求出的公式,可以求出x0;将r,x0带入公式在这里插入图片描述
可求出指数增长模型方法一的x值

代码如下:
使用的是matlb函数

function [ x1 ] = method_1( x )
%方法一:直接用人口数据和线性最小二乘法
% 利用函数polyfit(),dsolve()求解,r年增长率,返回x1模型的估计值
    y=log(x);
    t=0:1:21;
    p=polyfit(t,y,1);
    r=p(1);
    a=p(2);
    x0=exp(a);
    s=dsolve('Dx=r*x','x(0)=x0','t');
    x1=eval(s);
    x1=x1';
end

运行代码:

x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
m=1790:10:2000;
m=m';
m(:,2)=x';
m(:,3)=method_1(x);

运行界面:
在这里插入图片描述
运行结果:第一列代表年份;第二列代表实际人口;第三列为指数增长模型:方法一的预估值
在这里插入图片描述

对2010年的人口预测

根据上面算出的结果,可以得到:r=0.2020 x0=6.0496
直接利用算出来的参数计算2020年的结果(t=22)
运行代码:

>> x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
>>  y=log(x);
    t=0:1:21;
    p=polyfit(t,y,1);
    r=p(1);
    a=p(2);
    x0=exp(a);
    %若要预测2010年的人口对t进行更改
    t=0:1:22;
    s=dsolve('Dx=r*x','x(0)=x0','t');
>> t=22;
>> eval(s)

运行结果:
在这里插入图片描述

指数增长模型:方法二

先对人口数据进行数值微分,再计算增长率并将其平均值作为 的估计; 直接取原始数据。
公式:
在这里插入图片描述
先求rk,再求出r,再根据公式在这里插入图片描述
求出模型的预估值
代码如下:
我是以函数文件运行:

function [ x2 ] = method_2( x )
%方法二:先对人口数据作数值微分,再计算增长率并将其平均值作为r的估计;x0直接采用原数据

n=length(x);
t=0:1:n-1;
rk=zeros(1,n);
rk(1)=(-3*x(1)+4*x(2)-x(3))/2;
rk(n)=(x(n-2)-4*x(n-1)+3*x(n))/2;
for i=2:n-1
rk(i)=(x(i+1)-x(i-1))/2;
end
rk=rk./x;
r=sum(rk)/n;
x2=zeros(n,1);
x2(1)=x(1);
for i=1:n
x2(i)=x2(1)*exp(r*t(i));
end

end

运行代码

  x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
m=1790:10:2000;
m=m';
m(:,2)=x';
m(:,3)=method_1(x);
 m(:,4)=method_2(x);

运行界面:
在这里插入图片描述
运行结果:第一列代表年份;第二列代表实际人口;第三列为指数增长模型:方法一的预估值;第四列为指数增长模型:方法二的预估值

在这里插入图片描述

对2010年人口预测

已经求得r与x0代码:

x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
n=length(x);
t=0:1:n-1;
rk=zeros(1,n);
rk(1)=(-3*x(1)+4*x(2)-x(3))/2;
rk(n)=(x(n-2)-4*x(n-1)+3*x(n))/2;
for i=2:n-1
rk(i)=(x(i+1)-x(i-1))/2;
end
rk=rk./x;
r=sum(rk)/n;
x2=zeros(n,1);
x2(1)=x(1);
>> t=22;
>> x2(1)*exp(r*t)

运行结果:
在这里插入图片描述

改进的指数增长模型

指数增长模型进行改进。改进为:
假设:
在这里插入图片描述
在这里插入图片描述
利用dsolve()函数可得:
在这里插入图片描述
已知t值,根据上面我们已经求过了rk,所以rk也是已知的,然后利用最小二乘法polyfit()函数计算出
中的r0和r1,x0=3.9,利用eval()函数求出结果
运行代码:
函数:

function [ x3 ] =method_3( x )
%方法三:改进的指数增长模型
%   Detailed explanation goes here
n=length(x);
t=0:1:n-1;
rk=zeros(1,n);
rk(1)=(-3*x(1)+4*x(2)-x(3))/2;
rk(n)=(x(n-2)-4*x(n-1)+3*x(n))/2;
for i=2:n-1
rk(i)=(x(i+1)-x(i-1))/2;
end
rk=rk./x;
p=polyfit(t,rk,1);
r0=p(2);
r1=-p(1);
s=dsolve('Dx=(r0-r1*t)*x','x(0)=x0','t');
x0=3.9;
x3=zeros(n,1);
x3=eval(s);
x3=x3';
end

运行代码:

x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
m=1790:10:2000;
m=m';
m(:,2)=x';
m(:,3)=method_1(x);
m(:,4)=method_2(x);
 m(:,5)=method_3(x);

运行界面:
在这里插入图片描述
运行结果:第一列代表年份;第二列代表实际人口;第三列为指数增长模型:方法一的预估值;第四列为指数增长模型:方法二的预估值;第五列改进指数模型的预估值
在这里插入图片描述

对2010人口预测

>> x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
>> n=length(x);
t=0:1:n-1;
rk=zeros(1,n);
rk(1)=(-3*x(1)+4*x(2)-x(3))/2;
rk(n)=(x(n-2)-4*x(n-1)+3*x(n))/2;
for i=2:n-1
rk(i)=(x(i+1)-x(i-1))/2;
end
rk=rk./x;
p=polyfit(t,rk,1);
r0=p(2);
r1=-p(1);
s=dsolve('Dx=(r0-r1*t)*x','x(0)=x0','t');
x0=3.9;
>> t=22;
>> eval(s)

运行结果:
在这里插入图片描述

逻辑斯蒂(logistic)模型

xm:表示人口容量
有了人口容量的限制,当人口数量增加时,增长率r减小,用在这里插入图片描述
表示。

  1. 当x=0时,r(0)=r,则a=r
  2. 当x=xm时,此时人口不再增长,增长率r=0,于是:b=-r/x0
    在这里插入图片描述

逻辑斯蒂(logistic)模型:方法一

开勇函数dsolve()求解可得
在这里插入图片描述
在这里插入图片描述
代码如下:函数

function [ x4 ] = logistic_1( x )
%逻辑斯蒂模型方法一
n=length(x);
t=0:1:n-1;
rk=zeros(1,n);
rk(1)=(-3*x(1)+4*x(2)-x(3))/2;
rk(n)=(x(n-2)-4*x(n-1)+3*x(n))/2;
for i=2:n-1
rk(i)=(x(i+1)-x(i-1))/2;
end
rk=rk./x;
p=polyfit(x,rk,1);
b=p(1);
a=p(2);
r=a;
xm=-r/b;
s=dsolve('Dx=r*x*(1-x/xm)','x(0)=x0','t');
x0=3.9;
x4=eval(s);
x4=x4';
x4=abs(x4);
end

运行代码:

x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
m=1790:10:2000;
m=m';
m(:,2)=x';
m(:,3)=method_1(x);
m(:,4)=method_2(x);
m(:,5)=method_3(x);
m(:,6)=logistic_1(x);

运行界面:
在这里插入图片描述
运行结果:第一列代表年份;第二列代表实际人口;第三列为指数增长模型:方法一的预估值;第四列为指数增长模型:方法二的预估值;第五列改进指数模型的预估值;第六列逻辑斯蒂方法一预估值
在这里插入图片描述

对2010预测

代码:

>> x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
>> n=length(x);
t=0:1:n-1;
rk=zeros(1,n);
rk(1)=(-3*x(1)+4*x(2)-x(3))/2;
rk(n)=(x(n-2)-4*x(n-1)+3*x(n))/2;
for i=2:n-1
rk(i)=(x(i+1)-x(i-1))/2;
end
rk=rk./x;
p=polyfit(x,rk,1);
b=p(1);
a=p(2);
r=a;
xm=-r/b;
s=dsolve('Dx=r*x*(1-x/xm)','x(0)=x0','t');
x0=3.9;
>> t=22;
>> eval(s)

运行结果:如果出现结果有复数,对结果进行转换,如下图
在这里插入图片描述
在这里插入图片描述

逻辑斯蒂(logistic)模型:方法二

直接用数据和非线性最小而成估计参数:
运行代码:

function [ x5 ] = logistic_2( x )
%逻辑斯蒂模型方法二
 n=length(x);
t=0:1:n-1;
 f=@(a,t)a(1)./(1+(a(1)./a(2)-1).*exp(-a(3).*t));
  [A,cancha]=lsqcurvefit(f,[500,3.9,0.3],t,x);
  s=dsolve('Dx=r*x*(1-x/xm)','x(0)=x0','t');
r=A(3);
x0=A(2);
xm=A(1);
x5=eval(s);
x5=x5';
x5=abs(x5);
end

运行代码:

x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
m=1790:10:2000;
m=m';
m(:,2)=x';
m(:,3)=method_1(x);
m(:,4)=method_2(x);
m(:,5)=method_3(x);
m(:,6)=logistic_1(x);
m(:,7)=logistic_2(x);

运行界面:
在这里插入图片描述
运行结果:第一列代表年份;第二列代表实际人口;第三列为指数增长模型:方法一的预估值;第四列为指数增长模型:方法二的预估值;第五列改进指数模型的预估值;第六列逻辑斯蒂方法一预估值;第七列逻辑斯蒂方法二预估值
在这里插入图片描述

对2010预测

代码:

 x=[3.9	5.3	7.2	9.6	12.9	17.1	23.2	31.4	38.6	50.2	62.9	76	92	105.7	122.8	131.7	150.7	179.3	203.2	226.5	248.7	281.4];
>>  n=length(x);
t=0:1:n-1;
 f=@(a,t)a(1)./(1+(a(1)./a(2)-1).*exp(-a(3).*t));
  [A,cancha]=lsqcurvefit(f,[500,3.9,0.3],t,x);
  s=dsolve('Dx=r*x*(1-x/xm)','x(0)=x0','t');
r=A(3);
x0=A(2);
xm=A(1);
>> t=22;
>> eval(s)

运行结果:
在这里插入图片描述
在这里插入图片描述

©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值