题目描述
咕咕东考试周开始了,考试周一共有n天。他不想考试周这么累,于是打算每天都吃顿好的。他决定每天都吃生煎,咕咕东每天需要买ai个生煎。但是生煎店为了刺激消费,只有两种购买方式:①在某一天一次性买两个生煎。②今天买一个生煎,同时为明天买一个生煎,店家会给一个券,第二天用券来拿。没有其余的购买方式,这两种购买方式可以用无数次,但是咕咕东是个节俭的好孩子,他训练结束就走了,不允许训练结束时手里有券。咕咕东非常有钱,你不需要担心咕咕东没钱,但是咕咕东太笨了,他想问你他能否在考试周每天都能恰好买ai个生煎。
Input
输入两行,第一行输入一个正整数n(1<=n<=100000),表示考试周的天数。
第二行有n个数,第i个数ai(0<=ai<=10000)ai表示第ii天咕咕东要买的生煎的数量。
Output
如果可以满足咕咕东奇怪的要求,输出"YES",如果不能满足,输出“NO”。(输出不带引号)
Sample Input 1
4
1 2 1 2
Sample Output 1
YES
Sample Input 2
3
1 0 1
Sample Output 2
NO
算法/思路分析
该题为一道模拟题。分析题意可知:若第i天需要买偶数个生煎,则当天即可购买(0需结合后一天/前一天特判);若第i天需要买奇数ai个生煎,则当天可购买ai-1个生煎,剩下1个需与前一天或后一天分别购买。按第i天从后往前循环,分类讨论如下:
(1)ai为偶数,当天即可购买
(2)ai为奇数,i为第一天,无法购买
(3)ai为奇数,ai-1为0,无法购买(ai-2 0 1)
(4)ai为奇数,ai-1为奇数,可以购买(1 1),下次循环 i = i -2
(5)ai为奇数,ai-1为非零偶数,ai-2为奇数,可以购买(1 2 1),下次循环 i = i - 3
(6)ai为奇数,ai-1为非零偶数,ai-2为偶数,则将ai-1设为1(即1221 → 1210),即在买完ai的同时将ai-1转化为奇数,之后再按(2)~(5)进行判断
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
using namespace std;
const int maxn = 1e5 + 10;
int a[maxn], n;
int doit()
{
int type = 1;
for(int i = n - 1; i >= 0; i--)
{
if(a[i] % 2 == 0) continue;
//a[i]为奇数
else
{
if(i - 1 < 0) return 2;
if(a[i-1] == 0) return 2;
//a[i-1]为奇数
else if(a[i-1] % 2 == 1)
{
i--;
continue;
}
//a[i-1]为非零偶数
else if((a[i-1] % 2) == 0)
{
//a[i-2]为奇数
if(a[i-2] % 2 == 1) {i -= 2;continue;}
//a[i-2]为偶数
else
{
a[i-1] = 1;
continue;
}
}
}
}
return type;
}
int main()
{
scanf("%d",&n);
for(int i = 0; i < n; i++) scanf("%d",&a[i]);
int type = 0;
type = doit();
if(type == 1) cout << "YES" << endl;
else if(type == 2) cout << "NO" << endl;
return 0;
}