5.1-python爬虫之Scrapy框架及入门

系列文章目录

python爬虫目录



前言

摘录自B站对应课程笔记
不愧是清华大佬!把Python网络爬虫讲得如此简单明了!从入门到精通保姆级教程(建议收藏)

以下是本篇文章正文内容,下面案例可供参考


一、Scrapy框架架构

1、Scrapy框架介绍

写一个爬虫,需要做很多的事情。比如:发送网络请求、数据解析、数据存储、反反爬虫机制(更换ip代理、设置请求头等)、异步请求等。这些工作如果每次都要自己从零开始写的话,比较浪费时间。因此Scrapy把一些基础的东西封装好了,在他上面写爬虫可以变的更加的高效(爬取效率和开发效率)。因此真正在公司里,一些上了量的爬虫,都是使用Scrapy框架来解决。

2、Scrapy架构图

在这里插入图片描述
在这里插入图片描述

3、Scrapy框架模块功能

  1. Scrapy Engine(引擎):Scrapy框架的核心部分。负责在Spider和ItemPipeline、Downloader、Scheduler中间通信、传递数据等。
  2. Spider(爬虫):发送需要爬取的链接给引擎,最后引擎把其他模块请求回来的数据再发送给爬虫,爬虫就去解析想要的数据。这个部分是我们开发者自己写的,因为要爬取哪些链接,页面中的哪些数据是我们需要的,都是由程序员自己决定。
  3. Scheduler(调度器):负责接收引擎发送过来的请求,并按照一定的方式进行排列和整理,负责调度请求的顺序等。
  4. Downloader(下载器):负责接收引擎传过来的下载请求,然后去网络上下载对应的数据再交还给引擎。
  5. Item Pipeline(管道):负责将Spider(爬虫)传递过来的数据进行保存。具体保存在哪里,应该看开发者自己的需求。
  6. Downloader Middlewares(下载中间件):可以扩展下载器和引擎之间通信功能的中间件。
  7. Spider Middlewares(Spider中间件):可以扩展引擎和爬虫之间通信功能的中间件。

二、安装和文档

  1. 安装:通过pip install scrapy即可安装。
  2. Scrapy官方文档:http://doc.scrapy.org/en/latest
  3. Scrapy中文文档:http://scrapy-4. chs.readthedocs.io/zh_CN/latest/index.html

1、在ubuntu上安装scrapy之前,需要先安装以下依赖,然后再通过pip install scrapy安装。:

sudo apt-get install python3-dev build-essential python3-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev

2、如果在windows系统下,提示这个错误ModuleNotFoundError: No module named 'win32api',那么使用以下命令可以解决:pip install pypiwin32

三、快速入门

1、创建项目

要使用Scrapy框架创建项目,需要通过命令来创建。首先进入到你想把这个项目存放的目录。然后使用以下命令创建:

scrapy startproject [项目名称]

2、目录结构介绍

在这里插入图片描述

以下介绍下主要文件的作用:

items.py:用来存放爬虫爬取下来数据的模型。
middlewares.py:用来存放各种中间件的文件。
pipelines.py:用来将items的模型存储到本地磁盘中。
settings.py:本爬虫的一些配置信息(比如请求头、多久发送一次请求、ip代理池等)。
scrapy.cfg:项目的配置文件。
spiders包:以后所有的爬虫,都是存放到这个里面。

3、使用Scrapy框架爬取糗事百科段子

使用命令创建一个爬虫:
进入到项目所在的路径,执行命令 scrapy genspider [爬虫名] [爬虫域名].注意, 爬虫名字不能和项目名称一致。

scrapy genspider qsbk_spider "qiushibaike.com"

创建了一个名字叫做 qsbk_spider 的爬虫,并且能爬取的网页只会限制在 qiushibaike.com 这个域名下。
在这里插入图片描述

爬虫代码解析:

import scrapy
 
class QsbkSpiderSpider(scrapy.Spider):
    name = 'qsbk_spider'
    allowed_domains = ['qiushibaike.com']
    start_urls = ['http://qiushibaike.com/']
 
    def parse(self, response):
        pass

其实这些代码我们完全可以自己手动去写,而不用命令。只不过是不用命令,自己写这些代码比较麻烦。要创建一个Spider,那么必须自定义一个类,继承自scrapy.Spider,然后在这个类中定义三个属性和一个方法。

  • name:这个爬虫的名字,名字必须是唯一的。
  • allow_domains:允许的域名。爬虫只会爬取这个域名下的网页,其他不是这个域名下的网页会被自动忽略。
  • start_urls:爬虫从这个变量中的url开始。
  • parse:引擎会把下载器下载回来的数据扔给爬虫解析,爬虫再把数据传给这个parse方法。这个是个固定的写法。这个方法的作用有两个,第一个是提取想要的数据。第二个是生成下一个请求的url。

修改settings.py代码:
在做一个爬虫之前,一定要记得修改setttings.py中的设置。两个地方是强烈建议设置的。

  1. ROBOTSTXT_OBEY 设置为 False。默认是True。即遵守机器协议,那么在爬虫的时候,scrapy首先去找robots.txt文件,如果没有找到。则直接停止爬取。在这里插入图片描述

  2. DEFAULT_REQUEST_HEADERS 添加 User-Agent。这个也是告诉服务器,我这个请求是一个正常的请求,不是一个爬虫。
    在这里插入图片描述

简单运行爬虫:
在项目根目录下执行命令来运行爬虫代码:scrapy crawl qsbk_spider
在这里插入图片描述

完成的爬虫代码:
1、 爬虫部分代码:

import scrapy
from scrapy.http.response.html import HtmlResponse
from scrapy.selector.unified import SelectorList
from qsbk.items import QsbkItem
 
class QsbkSpiderSpider(scrapy.Spider):
    name = 'qsbk_spider'
    allowed_domains = ['qiushibaike.com']
    start_urls = ['https://www.qiushibaike.com/text/page/1/']
 
    def parse(self, response):
        # SelectorList
        duanziDivs = response.xpath("//div[@class='col1 old-style-col1']/div")
        for duanziDiv in duanziDivs:
            # duanziDiv 类型: Selector
            auther = duanziDiv.xpath(".//h2/text()").get().strip()
            content = duanziDiv.xpath(".//div[@class='content']//text()").getall()
            content = "".join(content).strip()
            item = QsbkItem(auther=auther, content=content)
            # duanzi = {"auther": auther, "content": content}
            # 方法将返回一个生成器
            yield item

2、items.py部分代码:

import scrapy
 
class QsbkItem(scrapy.Item):
    auther = scrapy.Field()
    content = scrapy.Field()

3、pipeline部分代码:

import json
 
class QsbkPipeline:
    def __init__(self):
        self.fp = open("duanzi.json", "w", encoding="utf-8")
 
    def open_spider(self, spider):
        print("爬虫开始。。。。")
 
    def process_item(self, item, spider):
        item_json = json.dumps(dict(item), ensure_ascii=False)
        self.fp.write(item_json + "\n")
        return item
 
    def close_spider(self, spider):
        print("爬虫结束。。。")
        self.fp.close()

运行scrapy项目:
运行scrapy项目。需要在终端,进入项目所在的路径,然后scrapy crawl [爬虫名字]即可运行指定的爬虫。如果不想每次都在命令行中运行,那么可以把这个命令写在一个文件中。以后就在pycharm中执行运行这个文件就可以了。比如现在新创建一个文件叫做start.py,然后在这个文件中填入以下代码:

from scrapy import cmdline
 
# 下面是等价的
cmdline.execute(["scrapy", "crawl", "qsbk_spider"])
# cmdline.execute("scrapy crawl qsbk_spider".split())

Scrapy框架爬取糗事百科段子总结
1、response 是一个 scrapy.http.response.html.HtmlResponse 对象。可以执行 xpath 和 css 语法来提取数据。
2、提取出来的数据,是一个 Selector 或是一个 SelectorList 对象。如果想要获取其中的字符串,那么应该执行 getall 或者 get 方法
3、getall 方法 :获取 Selector 中所有的文本。返回的是一个列表
4、get 方法:获取的是 Selector 中的第一个文本。返回的是一个 str 类型。
5、如果数据解析回来,要传给 pipeline 处理,那么可以使用 yield 来返回。或者是收集所有的 item. 最后统一使用 return 返回。
6、item:建议在 items.py 中定义号模型,以后就不要使用字典。
7、pipeline: 这是一个专门用来保存数据的,其中三个方法是经常用到:
open_spoder(self, spider):当爬虫被打开时候执行。
process_spider(self, item, spider): 当爬虫有 item 传过来的时候会被调用。
close_spider(self, spider):当爬虫关闭的时候会被调用
注意:要激活 pipeline ,应该在 setting.py 中,设置 ITEM_PIPELINE。示例如下

# pipelines 和 优先级, 优先级值越小,越先运行
ITEM_PIPELINES = {
   'qsbk.pipelines.QsbkPipeline': 300,
}

4、优化数据存储方式

JsonItemExporterJsonLinesItemExporter
保存json 数据的时候,可以使用这个两个类,让操作变得更简单:

1、JsonItemExporter

这个是每次把数据添加到内存中,最后统一写入到磁盘中。
好处是,存储的是一个满足json规则的数据。
坏处是,如果数据量比较大,那么比较耗内存

from scrapy.exporters import JsonItemExporter
 
class QsbkPipeline:
    def __init__(self):
        self.fp = open("duanzi.json", "wb")
        self.exporter = JsonItemExporter(self.fp, encoding="utf-8", ensure_ascii=False )
 
    def open_spider(self, spider):
        print("爬虫开始。。。。")
        self.exporter.start_exporting()
 
    def process_item(self, item, spider):
        self.exporter.export_item(item)
        return item
 
    def close_spider(self, spider):
        print("爬虫结束。。。")
        self.exporter.finish_exporting()
        self.fp.close()

2、JsonLinesItemExporter

这个是每次调用 export_item 的时候把这个item 存储到硬盘中。
好处是,每次处理数据的时候,就直接存储到硬盘中,不会消耗内存,数据也比较安全
坏处是,每一个字典是一行,整个文件不是一个满足json格式的文件

from scrapy.exporters import JsonLinesItemExporter
 
class QsbkPipeline:
    def __init__(self):
        self.fp = open("duanzi.json", "wb")
        self.exporter = JsonLinesItemExporter(self.fp, encoding="utf-8", ensure_ascii=False )
 
    def open_spider(self, spider):
        print("爬虫开始。。。。")
 
    def process_item(self, item, spider):
        self.exporter.export_item(item)
        return item
 
    def close_spider(self, spider):
        print("爬虫结束。。。")
        self.fp.close()

5、抓取多个页面

import scrapy
from scrapy.http.response.html import HtmlResponse
from scrapy.selector.unified import SelectorList
from qsbk.items import QsbkItem
 
class QsbkSpiderSpider(scrapy.Spider):
    name = 'qsbk_spider'
    allowed_domains = ['qiushibaike.com']
    start_urls = ['https://www.qiushibaike.com/text/page/1/']
 
    base_domain = "https://www.qiushibaike.com"
 
    def parse(self, response):
        # SelectorList
        duanziDivs = response.xpath("//div[@class='col1 old-style-col1']/div")
        for duanziDiv in duanziDivs:
            # duanziDiv 类型: Selector
            auther = duanziDiv.xpath(".//h2/text()").get().strip()
            content = duanziDiv.xpath(".//div[@class='content']//text()").getall()
            content = "".join(content).strip()
            item = QsbkItem(auther=auther, content=content)
            # duanzi = {"auther": auther, "content": content}
            # 方法将返回一个生成器
            yield item
        next_url = response.xpath("//ul[@class='pagination']/li[last()]/a/@href").get()
        if not next_url:
            return   # 访问到最后一页没有“下一页”按钮,最后一个 li 没有 href
        else:
            # 重启创建一个请求,让调度器处理
            yield scrapy.Request(self.base_domain + next_url, callback=self.parse)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nosimper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值