CSDN中编辑数学公式的几种代码,根据代码去分析每种符号的表示方法吧,只能找到这些了^-^

注意$$之间的是另起一行显示
$在当前位置显示
这里是在$$代码$$显示的情况
\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.
\ f(x)=\int_0^\infty t{z-1}dt\,.
  f ( x ) = ∫ 0 ∞ t z − 1 d t   . \ f(x)=\int_0^\infty t{z-1}dt\,.  f(x)=0tz1dt.
\ f{x} = \int_{-\infty}^\infty \hat f\xi\,e^{2 \pi i \xi x} \,d\xi
  f x = ∫ − ∞ ∞ f ^ ξ   e 2 π i ξ x   d ξ \ f{x} = \int_{-\infty}^\infty \hat f\xi\,e^{2 \pi i \xi x} \,d\xi  fx=f^ξe2πiξxdξ
这里就是$代码$显示
$\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N
Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN

2.度为m的树中第i层上至多有 m i − 1 m^{i-1} mi1 这里就是$ $显示
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }

1 ( ϕ 5 − ϕ ) e 2 5 π = 1 + e − 2 π 1 + e − 4 π 1 + e − 6 π 1 + e − 8 π 1 + ⋯ \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } (ϕ5 ϕ)e52π1=1+1+1+1+1+e8πe6πe4πe2π
可以不用\displaystyle
\displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
( ∑ k = 1 n a k b k ) 2 ≤ ( ∑ k = 1 n a k 2 ) ( ∑ k = 1 n b k 2 ) \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) (k=1nakbk)2(k=1nak2)(k=1nbk2)
\displaystyle {1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots }= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.
1 + q 2 ( 1 − q ) + q 6 ( 1 − q ) ( 1 − q 2 ) + ⋯ = ∏ j = 0 ∞ 1 ( 1 − q 5 j + 2 ) ( 1 − q 5 j + 3 ) , for  ∣ q ∣ < 1. \displaystyle {1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots }= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1. 1+(1q)q2+(1q)(1q2)q6+=j=0(1q5j+2)(1q5j+3)1,for q<1.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值