Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
八皇后问题的变形,判断深搜即可。只有在‘#’上才可以放棋子。
代码:
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int n,k;
char s[10][10];//棋盘
int vis[10];//标记每一列是否有棋子,有棋子为1,无棋子为0
int ans,cnt;//总方案数,已放入棋盘棋子的个数
void dfs(int hang)
{
if(cnt==k) //棋子个数达到要求,方案数+1,返回
{
ans++;
return ;
}
if(hang >= n)//若搜出棋盘外,返回
return ;
for(int j=0;j<n;j++)
{
if(!vis[j]&&s[hang][j]=='#')
{
vis[j]=1;//标记为1
cnt++;
dfs(hang+1);
vis[j] = 0;//清除标记
cnt--;
}
}
dfs(hang + 1); //hang行不放棋子
}
int main()
{
while(~scanf("%d %d",&n,&k))
{
if(n==-1&&k==-1)
break;
getchar();
ans=0;
cnt=0;
memset(vis,0,sizeof(vis));//将标记初始化为0
for(int i = 0;i < n;i++)
{
gets(s[i]);
}
dfs(0);
printf("%d\n",ans);
}
return 0;
}