图的基本术语:

(1)邻接、依附。

(2)顶点的度、入度、出度。

(3)有向完全图、无向完全图。

(4)稠密图、稀疏图。

(5)路径、路径长度、回路。

(6)简单路径、简单回路。

(7)子图。

(8)连通图、连通回路。

(9)强连通图、强连通分量

图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:

                           G=(V,E)

其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。

非带权图——路径上边的个数

带权图——路径上各边的权之和

图的遍历操作

  图的遍历是从图中某一顶点出发,对图中所有顶点访问一次且仅访问一次。

在图中,任何两个顶点之间都可能存在边,顶点是没有确定的先后次序的,所以,顶点的编号不唯一。

图的存储结构及实现

用一个一维数组存储图中顶点的信息

用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。

邻接矩阵存储无向图的类

const int MaxSize=10;

template <class T>

class Mgraph{

   public:

      MGraph(T a[ ], int n, int e );  

       ~MGraph( )

       void DFSTraverse(int v);

       void BFSTraverse(int v);

   private:

       T vertex[MaxSize];

       int arc[MaxSize][MaxSize];

       int vertexNum, arcNum;

};

3、构造函数

template <class T>

MGraph::MGraph(T a[ ], int n, int e) {

    vertexNum=n; arcNum=e;

    for (i=0; i<vertexNum; i++)

        vertex[i]=a[i];

    for (i=0; i<vertexNum; i++)    //初始化邻接矩阵

       for (j=0; j<vertexNum; j++)

           arc[i][j]=0;            

    for (k=0; k<arcNum; k++) {

        cin>>i>>j;     //边依附的两个顶点的序号

        arc[i][j]=1;  arc[j][i]=1;  //置有边标志   

    }

深度优先遍历

int visited[MaxSize];

template <class T>

void MGraph::DFSTraverse(int v){

     cout<<vertex[v]; visited [v]=1;

     for (j=0; j<vertexNum; j++)

         if (arc[v][j]==1 && visited[j]==0)

            DFSTraverse( j );

}

广度优先遍历

int visited[MaxSize];

template <class T>

void MGraph::BFSTraverse(int v){    

    front=rear=-1;   //假设采用顺序队列且不会发生溢出

   int Q[MaxSize]; cout<<vertex[v]; visited[v]=1;  Q[++rear]=v;

    while (front!=rear)    {

v=Q[++front];  

         for (j=0; j<vertexNum; j++)

            if (arc[v][j]==1 && visited[j]==0 ) {

                  cout<<vertex[j]; visited[j]=1; Q[++rear]=j;

            }

      }

}

邻接表有两种结点结构:顶点表结点和边表结点。

vertex:数据域,存放顶点信息。

firstedge:指针域,指向边表中第一个结点。

adjvex:邻接点域,边的终点在顶点表中的下标。

next:指针域,指向边表中的下一个结点。

利用两个一维数组

一个数组存储顶点信息,

另外一个数组存储边及其权

数组分量包含三个域:边所依附的两个顶点,权值

普里姆算法

基本思想:

设G=(V, E)是具有n个顶点的连通网,

T=(U, TE)是G的最小生成树,

T的初始状态为U={u0}(u0∈V),TE={ },

重复执行下述操作:

在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。

克鲁斯卡尔算法

思想:

1. 初始化:U=V;  TE={ };

2. 循环直到T中的连通分量个数为1 

   在E中寻找最短边(u,v);

   如果顶点u、v位于T的两个不同连通分量,则

  将边(u,v)并入TE 

 将这两个连通分量合并为一个;

 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;

AOE网与关键路径

在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,边上的权值表示活动的持续时间,称这样的有向图叫做边表示活动的网,简称AOE网。AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

关键路径:在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。

关键活动:关键路径上的活动称为关键活动。

要找出关键路径,必须找出关键活动, 即不按期完成就会影响整个工程完成的活动。
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值