算法与分析

从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。

从贪心算法的定义可以看出,贪心算法不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解
#include<bits/stdc++.h>
using namespace std;
struct action
{
    int s;  //起始时间
    int f;  //结束时间
    int index;  //活动的编号
};
action a[1000];
bool b[1000];
bool cmp(const action &a,const action &b)
{
    if(a.f<=b.f) return true;
    return false;
}
//sort(a,a+n+1,cmp);
void GreedySelector(int n,action a[],bool b[])
{
    b[1]=true;
    int preEnd=1;
    cout<<a[1].index<<" ";
    for(int i=2;i<=n;i++)
        if(a[i].s>=a[preEnd].f)
        {
            b[i]=true;
            preEnd=i;
            cout<<a[i].index<<" ";
        }
}
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i].s;
        cin>>a[i].f;
        a[i].index=i;
    }
    sort(a,a+n+1,cmp);
    GreedySelector(n,a,b);
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值