某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要
拦截所有导弹最少要配备多少套这种导弹拦截系统。输入格式
一行,为导弹依次飞来的高度
输出格式
两行,分别是最多能拦截的导弹数与要拦截所有导弹最少要配备的系统数样例输入
389 207 155 300 299 170 158 65样例输出
6
2
这个问题分析后第一反应是第一问用动态规划做(求最长递减序列),第二问用贪心算法做。但是还是觉得有点困难,所以就去网上找找看看有没有更好的解决方法。然后找到一个令我耳目一新的思路,就是第二问的求解为序列的最长单调递增序列长度。
#include<bits/stdc++.h>
using namespace std;
#define LEN 20
int main()
{
int i=0,j=0;
int sum=0,num=0;
int mis[LEN+1]={0},up[LEN+1]={0},down[LEN+1]={0};
while(cin>>mis[i]&&mis[i]!=EOF)
{
int max1=0,max2=0;
up[i]=1;
down[i]=1;
for(j=0;j<i;j++)
{
if(mis[j]<mis[i]&&up[j]>max1)
max1=up[j];
if(mis[j]>mis[i]&&down[j]>max2)
max2=down[j];
}
up[i]=max1+1;
down[i]=max2+1;
sum=max(sum,up[i]);
num=max(num,down[i]);
i++;
}
cout<<num<<endl<<sum;
return 0;