算法与分析

 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

        输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要
拦截所有导弹最少要配备多少套这种导弹拦截系统。

输入格式
一行,为导弹依次飞来的高度


输出格式
两行,分别是最多能拦截的导弹数与要拦截所有导弹最少要配备的系统数

样例输入
389 207 155 300 299 170 158 65

样例输出
6
2

这个问题分析后第一反应是第一问用动态规划做(求最长递减序列),第二问用贪心算法做。但是还是觉得有点困难,所以就去网上找找看看有没有更好的解决方法。然后找到一个令我耳目一新的思路,就是第二问的求解为序列的最长单调递增序列长度。

 

#include<bits/stdc++.h>
using namespace std;
#define LEN 20
int main()
{
    int i=0,j=0;
    int sum=0,num=0;
    int mis[LEN+1]={0},up[LEN+1]={0},down[LEN+1]={0};
    while(cin>>mis[i]&&mis[i]!=EOF)
    {
        int max1=0,max2=0;
        up[i]=1;
        down[i]=1;
        for(j=0;j<i;j++)
        {
            if(mis[j]<mis[i]&&up[j]>max1)
                max1=up[j];
            if(mis[j]>mis[i]&&down[j]>max2)
                max2=down[j];
        }
        up[i]=max1+1;
        down[i]=max2+1;
        sum=max(sum,up[i]);
        num=max(num,down[i]);
        i++;
    }
    cout<<num<<endl<<sum;  
    return 0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值