POJ3666 Making the grade(分级)(线性DP)

题目

给定长度为N的序列A,构造一个长度为N的序列B,满足:
1、B非严格单调,即B1 ≤ B2 ≤…≤ BN 或B1≥B2≥…≥BN 。
2、最小化 S=∑Ni=|Ai−Bi| 。
只需要求出这个最小值S。。

输入

第一行包含一个整数N。
接下来N行,每行包含一个整数AiAi。

输出

输出一个整数,表示最小S值。

数据范围
1≤N≤20001≤N≤2000,
0≤Ai≤109

思路

这道题卡了好长时间,一直不知道思路是什么。Z_Z
总体上看,最后结果只能是递增或递减,在中间过程中决策就难以实现,解决思路是,先单调递增处理一遍,再按递减处理一遍,选取结果中小的。如何实现呢?
引理:Bi中的数字都是在Ai中出现过。
如果用一维DP[i]表示处理到第i个的花费,可以得到状态转移方程
dp[i]=dp[j[+sum(abs(a[i-1]-b[j ~ k]))+sum(abs(a[i]-b[k+1 ~ i]))。想暴力做啊,但是数据量他不允许啊!
所以一维不足以表示状态可以用二维 dp[i][j],表示当前到第i个元素,且最后一个元素b[i]=j。讨论单增:可以的到状态转移方程
dp[i][j]=dp[i][k]+abs(b[j]-a[i])(k<=j)就是第i-1个的高度为k,那么第i个高度j>=k。
离散化第二维,去转移。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int a[20001],b[20001],n;
ll dp[2001][2001];
ll work(){
    for(int i=1;i<=n;i++) {
        b[i]=a[i];
        dp[0][i]=0;
    }
    sort(b+1,b+1+n);
    for(int i=1;i<=n;i++){
        ll minn=dp[i-1][1];
        for(int j=1;j<=n;j++){
            minn=min(minn,dp[i-1][j]);//由于b数组单调递增的所以minn=dp[i][k],中k一定是小于等于j的。
            dp[i][j]=minn+abs(b[j]-a[i]);
        }
    }
    ll ans=dp[n][1];
    for(int i=2;i<=n;i++) ans=min(ans,dp[n][i]);
    return ans;
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i];
    ll res=work();
    reverse(a+1,a+1+n);//将数组翻转,如果去求解单调递减的情况
    res=min(res,work());
    cout<<res<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值