第六章 图

7 篇文章 0 订阅
3 篇文章 0 订阅

一、图的逻辑结构
(一)
图的定义:图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为G=(V,E)。其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。
(在线性表中,元素个数可以为零,称为空表;在树中,结点个数可以为零,称为空树;在图中,顶点个数不能为零,但可以没有边。)
简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现。
无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。
有向完全图:在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为有向完全图。
含有n个顶点的无向完全图有n×(n-1)/2条边。 含有n个顶点的有向完全图有n×(n-1)条边。
稀疏图:称边数很少的图为稀疏图;稠密图:称边数很多的图为稠密图。
顶点的度:在无向图中,顶点v的度是指依附于该顶点的边数,通常记为TD (v)。
顶点的入度:在有向图中,顶点v的入度是指以该顶点为弧头的弧的数目,记为ID (v);
顶点的出度:在有向图中,顶点v的出度是指以该顶点为弧尾的弧的数目,记为OD (v)。
权:是指对边赋予的有意义的数值量。
网:边上带权的图,也称网图。
回路(环):第一个顶点和最后一个顶点相同的路径。
简单路径:序列中顶点不重复出现的路径。
简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。
子图:若图G=(V,E),G'=(V',E'),如果V'V 且E'  E ,则称图G'是G的子图。
连通图:在无向图中,如果从一个顶点vi到另一个顶点vj(i≠j)有路径,则称顶点vi和vj是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。
连通分量:非连通图的极大连通子图称为连通分量。
强连通图:在有向图中,对图中任意一对顶点vi和vj (i≠j),若从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称该有向图是强连通图。
强连通分量:非强连通图的极大强连通子图。
生成树:n个顶点的连通图G的生成树是包含G中全部顶点的一个极小连通子图。
生成森林:在非连通图中,由每个连通分量都可以得到一棵生成树,这些连通分量的生成树就组成了一个非连通图的生成森林。
(二)图的便利操作
图的遍历是从图中某一顶点出发,对图中所有顶点访问一次且仅访问一次。 (是抽象操作,可以是对结点进行的各种处理,这里简化为输出结点的数据)

1. 深度优先遍历 (DFS:Depth First Search)
基本思想:
⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
2.广度优先遍历 (BFS:Broad First Search ;FIFO: First In First Out)
基本思想:
⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。
(三)图的存储结构及实现
1.邻接矩阵(数组表示法)
基本思想:
用一个一维数组存储图中顶点的信息
用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。
1)无向图的邻接矩阵
特点:主对角线为 0 且一定是对称矩阵。
顶点的度:邻接矩阵的第i行(或第i列)非零元素的个数。
判断顶点 i 和 j 之间是否存在边:测试邻接矩阵中相应位置的元素arc[i][j]是否为1。
求顶点 i 的所有邻接点:将数组中第 i 行元素扫描一遍,若arc[i][j]为1,则顶点 j 为顶点 i 的邻接点。
2)有向图的邻接矩阵
求顶点 i 的出度:邻接矩阵的第 i 行元素之和。
求顶点 i 的入度:邻接矩阵的第 i 列元素之和。
判断从顶点 i 到顶点 j 是否存在边:测试邻接矩阵中相应位置的元素arc[i][j]是否为1。
邻接矩阵存储无向图的类:
 

```cpp
const int MaxSize=10;
template <class T>
class Mgraph{
public:
MGraph(T a[ ], int n, int e );
~MGraph( )
void DFSTraverse(int v);
void BFSTraverse(int v);
……
private:
T vertex[MaxSize];
int arc[MaxSize][MaxSize];
int vertexNum, arcNum;
};
```

邻接矩阵中图的基本操作——构造函数 :
 

```cpp
template <class T>
MGraph::MGraph(T a[ ], int n, int e) {
vertexNum=n; arcNum=e;
for (i=0; i<vertexNum; i++)
vertex[i]=a[i];
for (i=0; i<vertexNum; i++) //初始化邻接矩阵
for (j=0; j<vertexNum; j++)
arc[i][j]=0;
for (k=0; k<arcNum; k++) {
cin>>i>>j; //边依附的两个顶点的序号
arc[i][j]=1; arc[j][i]=1; //置有边标志
}
}
```

邻接矩阵中图的基本操作——深度优先遍历:
⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
递归定义
 

```cpp
int visited[MaxSize];
template <class T>
void MGraph::DFSTraverse(int v){
cout<<vertex[v]; visited [v]=1;
for (j=0; j<vertexNum; j++)
if (arc[v][j]==1 && visited[j]==0)
DFSTraverse( j );
}
```

邻接矩阵中图的基本操作——广度优先遍历:
⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。
 

```cpp
int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){
front=rear=-1; //假设采用顺序队列且不会发生溢出
int Q[MaxSize]; cout<<vertex[v]; visited[v]=1; Q[++rear]=v;
while (front!=rear) {
v=Q[++front];
for (j=0; j<vertexNum; j++)
if (arc[v][j]==1 && visited[j]==0 ) {
cout<<vertex[j]; visited[j]=1; Q[++rear]=j;
}
}
}
```

邻接矩阵上的其他操作:

增加一个顶点:在存储顶点的一维数组中插入该顶点的信息 在邻接矩阵中插入一行、一列

删除一个顶点:在存储顶点的一维数组中删除该顶点的信息 在邻接矩阵中删除一行、一列

增加一条边:修改相应的矩阵元素的值

删除一条边:修改相应的矩阵元素的值

2.邻接表

邻接表存储的基本思想: 对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(对于有向图则称为出边表) 所有边表的头指针和存储顶点信息的一维数组构成了顶点表。

邻接表有两种结点结构:顶点表结点和边表结点。

定义邻接表的结点:

struct ArcNode{   
      int adjvex; 
      ArcNode *next;
};

template <class T>
struct VertexNode{
      T vertex;
      ArcNode *firstedge;
};
邻接表存储有向图的类:
const int MaxSize=10;    //图的最大顶点数
template <class T>
class ALGraph
{    
   public:
       ALGraph(T a[ ], int n, int e);   
       ~ALGraph;    
       void DFSTraverse(int v);      
       void BFSTraverse(int v);      
   ………
  private:
       VertexNode adjlist[MaxSize];   
       int vertexNum, arcNum;       
};

邻接表中图的基本操作——构造函数:

template <class T>
ALGraph::ALGraph(T a[ ], int n, int e)
{   
    vertexNum=n; arcNum=e; 
    for (i=0; i<vertexNum; i++)   
    {
       adjlist[i].vertex=a[i];
       adjlist[i].firstedge=NULL;      
    } 
     for (k=0; k<arcNum; k++)   
     {
         cin>>i>>j;    
         s=new ArcNode; s->adjvex=j;  	        
         s->next=adjlist[i].firstedge;    
         adjlist[i].firstedge=s;
     }
}



   

邻接表中图的基本操作——深度优先遍历:

template <class T>
void ALGraph::DFSTraverse(int v){        
    cout<<adjlist[v].vertex;  visited[v]=1;
    p=adjlist[v].firstedge;    
    while (p!=NULL)     {
        j=p->adjvex;
        if (visited[j]==0) DFSTraverse(j);
    p=p->next;           
    }
}

邻接表中图的基本操作——广度优先遍历:

template <class T>
void ALGraph::BFSTraverse(int v){
   front=rear=-1;   
   cout<<adjlist[v].vertex;    visited[v]=1;   Q[++rear]=v;   
   while (front!=rear)  {
       v=Q[++front];    p=adjlist[v].firstedge;    
       while (p!=NULL)  {
            j= p->adjvex;
            if (visited[j]==0) {
                cout<<adjlist[j].vertex;  visited[j]=1; Q[++rear]=j;
            }
            p=p->next;
       }
    }
}

其他操作:

增删顶点 增加:顶点表中插入一个元素

删除:在顶点表中删除一个元素,同时在边表中删除相应的边 增删边<x, y> 如果是有向图,则在x的边表中增加/删除边; 如果是无向图,则还要在y的边表中增加/删除一条边。

3.十字链表:有向图的链式存储结构

边集数组:利用两个一维数组 一个数组存储顶点信息, 另外一个数组存储边及其权 数组分量包含三个域:边所依附的两个顶点,权值 各边在数组中的次序可以任意。

边集数组的实现:

Struct edge
{ 
    int i;
    int j;
    int weight;
}

将邻接矩阵转化成边集数组:

 edge edges[M];//边的数据结构类型的变量
 for ( i = 0; i < G->vexnum; i++) { 
	 for (j = 0; j <= G->vexnum; j++)  {
	    if (G->arc[i][j] == 1)   {
	  	    edges[k].begin = i;
  	  	    edges[k].end = j;
	          // edges[k].weight = G->arc[i][j];
               k++;
         }
     }
 }

二、最小生成树

最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树。  

(一)普里姆(Prim)算法

基本思想: 设G=(V, E)是具有n个顶点的连通网, T=(U, TE)是G的最小生成树, T的初始状态为U={u0}(u0∈V),TE={ }, 重复执行下述操作: 在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。

伪代码:

1. 初始化两个辅助数组lowcost(=arc[0][i])和adjvex(=0)(0是始点);
2. 输出顶点u0,将顶点u0加入集合U中;
3. 重复执行下列操作n-1次
   3.1 在lowcost中选取最短边(lowcost[k]),取对应的顶点序号k;
   3.2 输出顶点k和对应的权值;
   3.3 将顶点k加入集合U中(lowcost[k]=0);
   3.4 调整数组lowcost和adjvex;
Void prime(MGraph G){
    for(int i=1;i<G.vertexNu;i++){
        lowcost[i]=G.arc[0][i];  adjvex[i]=0;
    }
    lowcost[0]=0;
    for(i=1;i<G.vertexNum;i+++){
        k=MinEdge(lowcost,G.vertexNum)
        cout<<K<<adjvex[k]<<lowcost[k];
        lowcost[k]=0;
       
       for(j=1;j<G.vertexNum;j++)
          if((G.arc[k][j]<lowcost[j]){
              lowcost[j]=G.arc[k][j];
              arcvex[j]=k;
           }
    }
}

(二)克鲁斯卡尔(Kruskal)算法

基本思想: 设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ }, 然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。 若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边作为最小生成树的边加入到T中,同时把两个连通分量连接为一个连通分量; 若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路, 如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。

Kruskal算法思想:

1. 初始化:U=V;  TE={ };

2. 循环直到T中的连通分量个数为1        

2.1 在E中寻找最短边(u,v);    

 2.2 如果顶点u、v位于T的两个不同连通分量,则          

 2.2.1 将边(u,v)并入TE;           

 2.2.2 将这两个连通分量合并为一个;      

2.3 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;

Kruskal算法实现中的三个关键问题:

1.图的存储结构 :

采用边集数组存储图。

2.如何判断一条边所依附的两个顶点在同一个连通分两中(并查集): 定义Parent[i]数组。数组分量的值表示顶点i的双亲节点(初值为-1;)      当一条边(u,v)的两个顶点的根结不同时,这两个结点属于不同的连通分量(利用parent 数组查找一棵树的根节点。当一个结点n的parent==-1,树的根节点即为n)

3.   如何将一条边所依附的两个顶点合并到同一个连通分量中       要进行联通分量的合并 ,其中一个顶点所在的树的根节点为vex1,另一个顶点所在的树的根节点为vex2,则:parent[vex2]=vex1;

三、最短路径

在非网图中,最短路径是指两顶点之间经历的边数最少的路径。

在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。

Dijkstra算法:

基本思想:

1.设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,

2. 对vi∈V-S,假设从源点v到vi的有向边为最短路径(从v到其余顶点的最短路径的初值)。

3. 以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。

重复上述过程,直到集合V中全部顶点加入到集合S中。

Floyd算法——C++描述:

void Floyd(MGraph G)
{
    for (i=0; i<G.vertexNum; i++)        
       for (j=0; j<G.vertexNum; j++)
       {
          dist[i][j]=G.arc[i][j];
          if (dist[i][j]!=∞) 
               path[i][j]=G.vertex[i]+G.vertex[j];
          else path[i][j]=""; 
       }
     for (k=0; k<G.vertexNum; k++)         
        for (i=0; i<G.vertexNum; i++)       
           for (j=0; j<G.vertexNum; j++)
               if (dist[i][k]+dist[k][j]<dist[i][j]) {
                    dist[i][j]=dist[i][k]+dist[k][j];
                    path[i][j]=path[i][k]+path[k][j];
              }
}

四、 有向无环图及其应用

(一)AOV网

AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。

特点:

1.AOV网中的弧表示活动之间存在的某种制约关系。

2.AOV网中不能出现回路 。

拓扑序列:

基本思想: ⑴ 从AOV网中选择一个没有前驱的顶点并且输出; ⑵ 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧; ⑶ 重复上述两步,直到全部顶点都被输出,或AOV网中不存在没有前驱的顶点。

拓扑排序算法——伪代码:

1. 栈S初始化;累加器count初始化;
2. 扫描顶点表,将没有前驱的顶点压栈;
3. 当栈S非空时循环
       3.1 vj=退出栈顶元素;输出vj;累加器加1;
       3.2 将顶点vj的各个邻接点的入度减1;
       3.3 将新的入度为0的顶点入栈;
4. if (count<vertexNum) 输出有回路信息;
void TOpSort(){
int  top=-1, count=0;
for(int i=0;i<vertexnum;i++)
     if(adjlist[i].in==0) s[++top]=i;
while(top!=-1){
    j=s[top--]; cout <<adjlist[j].vertext;   count++;
    p=adjlist[j].firstedge;
    while(p!=NULL){
          k=p->adjvex; adjlist[k].in--;
         if(adjlist[k].in==0) s[top++]=k;
         p=p->next;
      } 
}
If (count<vertexNum) cout<<“有回路”;
}

AOE网

AOE网: 在一个表示工程的带权有向图中, 用顶点表示事件, 用有向边表示活动, 边上的权值表示活动的持续时间, 称这样的有向图叫做边表示活动的网,简称AOE网。 AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

关键路径:在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。

关键活动:关键路径上的活动称为关键活动。

⑴ 事件的最早发生时间ve[k]

ve[k]是指从始点开始到顶点vk的最大路径长度。这个长度决定了所有从顶点vk发出的活动能够开工的最早时间。

⑵ 事件的最迟发生时间vl[k]

vl[k]是指在不推迟整个工期的前提下,事件vk允许的最晚发生时间。

 ⑶ 活动的最早开始时间e[i]

若活动ai是由弧<vk , vj>表示,则活动ai的最早开始时间应等于事件vk的最早发生时间。因此,有:e[i]=ve[k]

⑷ 活动的最晚开始时间l[i]

活动ai的最晚开始时间是指,在不推迟整个工期的前提下, ai必须开始的最晚时间。 若ai由弧<vk,vj>表示, 则ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。 因此,有:l[i]=vl[j]-len<vk, vj>                                  

                                  

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值