PyCharm专业版下载与安装教程

PyCharm版本介绍

专业版 Professional: 用于科学性和 Web Python开发。与HTML, JS,和 SQL 支持,收费。

社区版 Community: 纯Python开发,免费开源。


文章资源下载

文章中所提到的资源汇总,方便大家下载。

资源链接提取码
pycharm-professional-2020.2.3https://pan.baidu.com/s/1rtJQciHG95JMplhi33TbZAne10
pycharm-professional-2021.1.1https://pan.baidu.com/s/1nc9BEBmUfYznV_7pF9sUaAovau
jetbrains-toolbox-1.20.8352https://pan.baidu.com/s/17EPOYwJUDYMuz5wR1NTMqQ52vg
PyCharm插件https://pan.baidu.com/s/1U5irnZJdxZjKm-jB3YzqRAc8i5

专业版下载

这里就介绍以 Windows 平台上下载 PyCharm 专业版 。


官网下载

PyCharm官网图


选择专业版点击下载,跳转到如下界面

再次请求下载

请耐心等待一小会,如果下载没有反应,可以再次点击上图链接,请求下载。


网盘下载

如果官网进不去,或者下载好慢。我分别准备了

  • pycharm-professional-2020.2.3
  • pycharm-professional-2021.1.1

这两个版本供大家选择下载。


资源链接提取码
pycharm-professional-2020.2.3https://pan.baidu.com/s/1rtJQciHG95JMplhi33TbZAne10
pycharm-professional-2021.1.1https://pan.baidu.com/s/1nc9BEBmUfYznV_7pF9sUaAovau

ToolBox下载

ToolBox 是一个 JetBrains 全家桶的管理工具,可以用这个工具下载 JetBrains 软件产品,及更新。

下载链接:ToolBox下载 https://www.jetbrains.com/toolbox-app/


官网下载

ToolBox


ToolBox下载


网盘下载

还是一样如果官网进不去或下载好慢,可以在网盘上获取。

资源链接提取码
jetbrains-toolbox-1.20.8352https://pan.baidu.com/s/17EPOYwJUDYMuz5wR1NTMqQ52vg

展示效果

toolbox


安装向导

1、WelCome

1 Welcome


2、选择安装位置

2 选择安装路径


3、安装选项

3 安装选项


4、最后安装

4 最后安装

插件安装

资源链接提取码
PyCharm实用插件https://pan.baidu.com/s/1U5irnZJdxZjKm-jB3YzqRAc8i5

直接把 zip 包拖进IDE的窗口来进行插件的安装
插件安装


如果无法拖动安装,

你可以在File/Settings -> Plugins 里手动安装插件(Install Plugin From Disk...

本地磁盘安装

查看插件是否安装成功 Help
唤出插件

尾语

✍ 用 Code 谱写世界,让生活更有趣。❤️

✍ 万水千山总是情,点赞再走行不行。❤️

✍ 码字不易,还望各位大侠多多支持。❤️


004.png

### 回答1: 好的,以下是一个简单的实现: ```python from sklearn.cluster import KMeans import matplotlib.pyplot as plt import seaborn as sns import numpy as np # 数据集 X = ... # 计算每个k值对应的Inertia inertias = [] for k in range(1, 11): kmeans = KMeans(n_clusters=k, random_state=42) kmeans.fit(X) inertias.append(kmeans.inertia_) # 绘制手肘图 sns.set() plt.plot(range(1, 11), inertias) plt.title('Elbow Method') plt.xlabel('Number of clusters') plt.ylabel('Inertia') plt.show() # 手动确定最佳的k值 diff = np.diff(inertias) plt.plot(range(1, 10), diff) plt.title('Diff Method') plt.xlabel('Number of clusters') plt.ylabel('Difference') plt.show() k = diff.argmax() + 2 print(f"最佳的簇个数为{k}") ``` 解释一下这段代码: 首先,我们导入了`KMeans`类以及其他必要的库。然后,我们定义了一个数据集`X`,可以是任何你想聚类的数据集。接下来,我们计算了每个`k`值对应的Inertia,并将其存储在列表`inertias`中。Inertia表示每个簇内部数据点到簇中心的距离的平方和,它的值越小,说明簇内部的数据点越接近彼此。然后,我们绘制了手肘图,手肘图显示了不同`k`值对应的Inertia值。我们可以看到,在`k=3`时,Inertia的下降速度开始变缓,这就是所谓的“手肘点”,表示增加更多的簇不会显著地降低Inertia值了。 为了更好地确定最佳的簇个数,我们可以计算Inertia值的差异,并绘制差异图。差异值越大,说明增加更多的簇会对模型的性能有所提升。我们可以看到,在`k=3`时,差异值达到了峰值,这也证实了手肘图中的观察结果。 最后,我们手动确定最佳的簇个数`k`,它是差异值最大的位置加上2。在这个例子中,最佳的簇个数为3。 ### 回答2: 手肘法是一种常用于确定KMeans聚类的簇个数的方法。该方法通过计算不同簇个数下的聚类结果的总内离差平方和(Total Within Cluster Sum of Squares, TWCSS)来评估聚类效果。 首先,我们需要导入所需的Python库,包括numpy和sklearn中的KMeans模块: ```python import numpy as np from sklearn.cluster import KMeans ``` 接下来,我们可以使用手肘法来确定KMeans聚类的簇个数。假设我们已经有了用于聚类的数据集data。 我们可以尝试不同的簇个数k,然后计算每个簇个数下的TWCSS。 ```python # 初始化簇个数和TWCSS列表 k_values = [] # 存储簇个数 tWCSS_values = [] # 存储聚类结果的TWCSS for k in range(1, 11): # 尝试1到10个簇 kmeans = KMeans(n_clusters=k).fit(data) # 使用KMeans算法进行聚类 k_values.append(k) tWCSS_values.append(kmeans.inertia_) # 计算并存储TWCSS ``` 接下来,我们可以使用matplotlib库将簇个数和对应的TWCSS绘制成图形,以便选择最合适的簇个数。 ```python import matplotlib.pyplot as plt # 绘制簇个数和TWCSS的图形 plt.plot(k_values, tWCSS_values, 'bo-') plt.xlabel('Number of Clusters (k)') plt.ylabel('Total Within Cluster Sum of Squares (TWCSS)') plt.title('Elbow Method for KMeans Clustering') plt.show() ``` 根据图形的变化趋势,我们可以找到一个拐点(即手肘点),该点对应的簇个数即为适合的聚类簇个数。 最后,我们可以选择手肘点对应的簇个数作为最终的聚类簇个数,并使用KMeans算法进行最终的聚类。 ```python # 选择手肘点对应的簇个数 optimal_k = tWCSS_values.index(min(tWCSS_values)) + 1 # 最终的聚类 final_kmeans = KMeans(n_clusters=optimal_k).fit(data) ``` 以上就是用Python实现手肘法确定KMeans聚类簇个数的方法。 ### 回答3: 手肘法是一种常用的方法来确定KMeans聚类的簇个数。它的基本思想是通过观察各个簇内的误差平方和(SSE)簇个数的关系,找到一个拐点,即误差平方和的变化开始趋于平缓的位置,该位置对应的簇个数就是最合适的。 要用Python实现手肘法确定KMeans聚类的簇个数,我们可以按照以下步骤进行: 1. 导入所需的库:首先,我们需要导入所需的库,包括numpy用于数据处理和矩阵运算,以及sklearn中的KMeans类用于聚类。 2. 数据准备:将需要聚类的数据准备好,可以是一个特征矩阵,也可以是一个向量。 3. 执行聚类:使用KMeans类进行聚类,可以设置一个较大的簇个数上限,比如10。然后,使用聚类模型的fit方法将数据拟合进去。 4. 计算SSE:对于每个可能的簇个数k,计算对应的簇内误差平方和(SSE)。可以通过访问聚类模型的属性inertia_来获取簇内误差平方和。 5. 找到拐点:通过可视化SSE随簇个数变化的曲线来找到拐点。可以使用matplotlib库绘制曲线。 下面是一个简单的代码示例: ```python import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt # 准备数据 # data = ... # 执行聚类 k_values = range(1, 11) sse_values = [] for k in k_values: kmeans = KMeans(n_clusters=k) kmeans.fit(data) sse_values.append(kmeans.inertia_) # 可视化曲线 plt.plot(k_values, sse_values, 'bx-') plt.xlabel('簇个数') plt.ylabel('SSE') plt.title('手肘法') plt.show() ``` 通过执行上述代码,我们可以得到一个关于簇个数和SSE的曲线。在该曲线中,我们需要找到一个拐点,即误差平方和的变化开始趋于平缓的位置。该位置对应的簇个数即为最合适的簇个数。 注意,手肘法并不是绝对准确的方法,有时可能需要结合其他评估指标和领域知识来确定最合适的簇个数。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值