1级标题
原理与卷积类似,设置一个n*n的滤波模板,滤波模板内的值累加除以模板的尺寸大小取平均为滤波后的值。
代码如下:
import cv2 as cv
import numpy as np
#均值滤波
def meansBlur(src, ksize):
'''
:param src: input image
:param ksize:kernel size
:return dst: output image
'''
dst = np.copy(src) #创建输出图像
kernel = np.ones((ksize, ksize)) # 卷积核
padding_num = int((ksize - 1) / 2) #需要补0
dst = np.pad(dst, (padding_num, padding_num), mode="constant", constant_values=0)
w, h = dst.shape
dst = np.copy(dst)
for i in range(padding_num, w - padding_num):
for j in range(padding_num, h - padding_num):
dst[i, j] = np.sum(kernel * dst[i - padding_num:i + padding_num + 1, j - padding_num:j + padding_num + 1]) \
// (ksize ** 2)
dst = dst[padding_num:w - padding_num, padding_num:h - padding_num] #把操作完多余的0去除,保证尺寸一样大
return dst
img_path = r"F:\03.png"
img = cv.imread(img_path,0)
dst = meansBlur(img,5)
cv.imshow('src

最低0.47元/天 解锁文章
367

被折叠的 条评论
为什么被折叠?



