用Pytorch实现线性回归

总的来说,分为四步:

  1. Prepare dataset
  2. Design model using Class
  3. Construct loss and optimizer
  4. Training cycle

代码如下:
1、prepare dataset

import torch
x_data=torch.Tensor([[1.0],[2.0],[3.0]])
y_data=torch.Tensor([[2.0],[4.0],[6.0]])

2、Design model using Class

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()
        self.linear=torch.nn.Linear(1,1)
    def forward(self,x):
        y_pred=self.linear(x)
        return y_pred
model=LinearModel()

3、Construct loss and optimizer

criterion=torch.nn.MSELoss(size_average=False)
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)

这里的SGD还可以换成其他优化器,比如:
torch.optim.Adagrad
torch.optim.Adam
torch.optim.Adamax
等等…

4、Training cycle

for epoch in range(100):
    y_pred=model(x_data)
    loss=criterion(y_pred,y_data)
    print(epoch,loss)
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

最后输出结果:

print('w= ',model.linear.weight.item())
print('b= ',model.linear.bias.item())
x_test=torch.Tensor([[4.0]])
y_test=model(x_test)
print('y_pred= ',y_test.data)

Tensor中有什么?有原始权重w和loss对w的导数。每进行一次反向传播,计算图都会清空。并且权值更新的时候要直接使用data,不能用Tensor计算(原因是:我们不希望再对其求导了,我们只是单纯地想更新值而已,而tensor做运算会有计算图)。
在Pytorch中,只要能成功地构造出计算图,它将自动地为我们求得梯度。最后求得的loss必须为标量。

听了刘洪普教授的课程,真是听君一堂课,胜读十本书啊!所以赶紧记录下来收获,怕忘了,哈哈哈!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值