总的来说,分为四步:
- Prepare dataset
- Design model using Class
- Construct loss and optimizer
- Training cycle
代码如下:
1、prepare dataset
import torch
x_data=torch.Tensor([[1.0],[2.0],[3.0]])
y_data=torch.Tensor([[2.0],[4.0],[6.0]])
2、Design model using Class
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel,self).__init__()
self.linear=torch.nn.Linear(1,1)
def forward(self,x):
y_pred=self.linear(x)
return y_pred
model=LinearModel()
3、Construct loss and optimizer
criterion=torch.nn.MSELoss(size_average=False)
optimizer=torch.optim.SGD(model.parameters(),lr=0.01)
这里的SGD还可以换成其他优化器,比如:
torch.optim.Adagrad
torch.optim.Adam
torch.optim.Adamax
等等…
4、Training cycle
for epoch in range(100):
y_pred=model(x_data)
loss=criterion(y_pred,y_data)
print(epoch,loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
最后输出结果:
print('w= ',model.linear.weight.item())
print('b= ',model.linear.bias.item())
x_test=torch.Tensor([[4.0]])
y_test=model(x_test)
print('y_pred= ',y_test.data)
Tensor中有什么?有原始权重w和loss对w的导数。每进行一次反向传播,计算图都会清空。并且权值更新的时候要直接使用data,不能用Tensor计算(原因是:我们不希望再对其求导了,我们只是单纯地想更新值而已,而tensor做运算会有计算图)。
在Pytorch中,只要能成功地构造出计算图,它将自动地为我们求得梯度。最后求得的loss必须为标量。
听了刘洪普教授的课程,真是听君一堂课,胜读十本书啊!所以赶紧记录下来收获,怕忘了,哈哈哈!