模运算

模运算法则
  • (a + b) % p = (a % p + b % p) % p

  • (a - b) % p = (a % p - b % p) % p

  • (a * b) % p = (a % p * b % p) % p

  • (a^b) % p = ((a % p)^b) % p

  • 推论:
    若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);
    若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);
    若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),
    (a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p);

  • 费马定理:若p是素数,a是正整数且不能被p整除,则:
    a^(p-1) mod p = 1 mod p
    推论:若p是素数,a是正整数且不能被p整除,则:
    a^p mod p = a mod p

快速幂模版

x^n%mod
O(logn)

typedef long long ll;

ll mod_pow(ll x, ll n, ll mod){
	ll res=1;
	while (n>0){
		if (n&1) res=res*x%mod;
		x=x*x%mod;
		n>>=1;
	}
	return res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值