模运算法则
-
(a + b) % p = (a % p + b % p) % p
-
(a - b) % p = (a % p - b % p) % p
-
(a * b) % p = (a % p * b % p) % p
-
(a^b) % p = ((a % p)^b) % p
-
推论:
若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);
若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);
若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),
(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p); -
费马定理:若p是素数,a是正整数且不能被p整除,则:
a^(p-1) mod p = 1 mod p
推论:若p是素数,a是正整数且不能被p整除,则:
a^p mod p = a mod p
快速幂模版
x^n%mod
O(logn)
typedef long long ll;
ll mod_pow(ll x, ll n, ll mod){
ll res=1;
while (n>0){
if (n&1) res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}