传统优化算法优点
1:利用了解空间的特性,如可微等。
2:理论较为完善,计算量小。
3:收敛速度快。
4:具有确定的终止准则。
传统优化算法缺点
1:仅能求出优化问题的局部最优解。
2:求解的结果强烈依赖于初始值。
遗传算法的优点:
1:能够求出优化问题的全局最优解。
2:优化结果与初始条件无关。
3:算法独立于求解域。
4:具有较强的鲁棒性(抗干扰)。
5:适合于求解复杂的优化问题。
6:应用较为广泛。
遗传算法的缺点
1:收敛速度慢。
2:局部搜索能力差。
3:控制变量较多。
4:无确定的终止准则。
特点的比较
-
传统优化算法一般是针对结构化的问题,有较为明确的问题和条件描述,如线性规划,二次规划,整数规划,混合规划,带约束和不带约束条件等,即有清晰的结构信息;而智能优化算法一般针对的是较为普适的问题描述,普遍比较缺乏结构信息。
-
传统优化算法不少都属于凸优化范畴,有唯一明确的全局最优点;而智能优化算法针对的绝大多数是多极值问题,如何防止陷入局部最优而尽可能找