平衡二叉树代码实现

平衡二叉树(AVL树)的详细介绍:https://blog.csdn.net/qq_43643944/article/details/116354568

#include <iostream>

using namespace std;
typedef struct BiTNode { //结点定义
    int data;
    int height;//高度,表示以当前结点为根的子树的高度
    struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree;

BiTNode *createNewNode(int v) { //创建一个新结点
    BiTNode *p = new BiTNode;
    p->data = v;
    p->height = 1;//结点的初始高度置为1
    p->lchild = p->rchild = NULL;
    return p;
}

int getHeight(BiTNode *root) { //得到以结点root为根的树的高度
    if (root == NULL) return 0;
    else return root->height;
}

int getBalanceFactor(BiTNode *root) { //求以结点root为根的树的平衡因子
    return getHeight(root->lchild) - getHeight(root->rchild);
}

void updataHeight(BiTNode *root) { //更新树的高度
    root->height = max(getHeight(root->lchild), getHeight(root->rchild)) + 1;
}

bool searchAVL(BiTree T, int x) {//AVL树的查找
    if (T == NULL)
        return false;
    if (T->data == x)
        return true;
    if (T->data > x)
        searchAVL(T->lchild, x);
    if (T->data < x)
        searchAVL(T->rchild, x);
}

void leftRotation(BiTree &T) { //左旋
    BiTNode *temp = T->rchild;
    T->rchild = temp->lchild;
    temp->lchild = T;
    updataHeight(T);
    updataHeight(temp);
    T = temp;
}

void rightRotation(BiTree &T) { //右旋
    BiTNode *temp = T->lchild;
    T->lchild = temp->rchild;
    temp->rchild = T;
    updataHeight(T);
    updataHeight(temp);
    T = temp;
}

void insertAVL(BiTree &T, int v) { //插入结点
    if (T == NULL) {
        T = createNewNode(v);
        return;;
    }
    if (T->data > v) {
        insertAVL(T->lchild, v);
        updataHeight(T);
        if (getBalanceFactor(T) == 2) {//左子树插入节点,发生不平衡时平衡因子为2
            if (getBalanceFactor(T->lchild) == 1) rightRotation(T); //LL型,右旋
            else if (getBalanceFactor(T->lchild) == -1) { //LR型
                leftRotation(T->lchild);//先左旋
                rightRotation(T);//再右旋
            }
        }
    } else {
        insertAVL(T->rchild, v);
        updataHeight(T);
        if (getBalanceFactor(T) == -2) {//右子树插入节点,发生不平衡时平衡因子为-2
            if (getBalanceFactor(T->rchild) == -1) leftRotation(T);//RR型
            else if (getBalanceFactor(T->rchild) == 1) { //RL型
                rightRotation(T->rchild);//先右旋
                leftRotation(T);//再左旋
            }
        }
    }
}

BiTree createAVL(int n, int data[]) { //创建AVL树
    BiTree T = NULL;
    for (int i = 0; i < n; ++i) {
        insertAVL(T, data[i]);
    }
    return T;
}

void InOrderTraverse(BiTree T) { //中序遍历
    if (T != NULL) {
        InOrderTraverse(T->lchild);//访问左子树
        cout << T->data << " 平衡因子为 : " << getBalanceFactor(T) << endl; //访问根结点
        InOrderTraverse(T->rchild);//访问右子树
    }
}

int main() {
    int data[10] = {10, 5, 30, 20, 15, 35, 50, 40, 45, 60};
    BiTree T = createAVL(10, data);
    cout << "中序遍历结果:" << endl;
    InOrderTraverse(T);
    return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Missヾaurora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值