ICG(impartial Combinatorial Games)
公平组合游戏
1.两名选手
2.两名选手交替操作,每次一步,每步都是在有限的合法集合中选取一种进行
3.在任何情况下,合法操作只取决于情况本身,与选手无关
4.游戏的败北条件为:当某位选手需要进行操作时,当前没有任何可以执行的合法操作,该选手败北;
1巴什博弈(Bush G ame)
只有一堆n个物品,两个人从轮流中取出(1~m)个;最后取光者胜。
代码:
if (n % (m + 1)) return ture;//先着胜
else return false;
2威佐夫博奕(Wythoff Game):
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
代码:
a,b为两堆石子的个数
注意精度问题,当两堆石子数量比交多的时候,要用高精度处理
double r = (sqrt(5.0) + 1) / 2; //黄金分割比
int d = abs(a - b) * r; //差值 * 黄金分割比
if (d != min (a, b)) return true;
else return false;
3尼姆博弈(Nimm Game)
n堆物品,两人轮流取,每次取某堆中不少于一个,最后取完者胜。
将n堆物品完全异或后结果位0,先手败,否者胜
代码:
int res = 0;
for (int i = 1; i <= n; i++)
{
res = res ^ arr[i];
}
if (res) return true;
else return false;
巴什博弈变形
PN模型
必胜点和必败点的概念:
P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质:
1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
n : 0 1 2 3 4 5 6 …
position: P N N P N N P …
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
Good Luck in CET-4 Everybody!
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15440 Accepted Submission(s): 9779
Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、 总共n张牌;
2、 双方轮流抓牌;
3、 每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、 抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。
Good luck in CET-4 everybody!
Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
Sample Input
1
3
Sample Output
Kiki
Cici
题解
kiki’s game
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 40000/10000 K (Java/Others)
Total Submission(s): 14588 Accepted Submission(s): 8917
Problem Description
Recently kiki has nothing to do. While she is bored, an idea appears in his mind, she just playes the checkerboard game.The size of the chesserboard is n*m.First of all, a coin is placed in the top right corner(1,m). Each time one people can move the coin into the left, the underneath or the left-underneath blank space.The person who can’t make a move will lose the game. kiki plays it with ZZ.The game always starts with kiki. If both play perfectly, who will win the game?
Input
Input contains multiple test cases. Each line contains two integer n, m (0<n,m<=2000). The input is terminated when n=0 and m=0.
Output
If kiki wins the game printf “Wonderful!”, else “What a pity!”.
Sample Input
5 3
5 4
6 6
0 0
Sample Output
What a pity!
Wonderful!
Wonderful!
题解
对于大部分的题,可以通过SG(Sprage-Grundy)函数将题转换成Nimm Game
Sprague-Grundy定理(SG定理):
游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html
进行进一步理解。
SG函数:
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG( c )}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
【实例】取石子问题
有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?
SG[0]=0,f[]={1,3,4},
x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;
x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;
x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;
x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;
x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;
以此类推…
x 0 1 2 3 4 5 6 7 8…
SG[x] 0 1 0 1 2 3 2 0 1…
由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:
1、使用 数组f 将 可改变当前状态 的方式记录下来。
2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。
3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。
4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。
//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,0,sizeof(SG));
//因为SG[0]始终等于0,所以i从1开始
for(i = 1; i <= n; i++){
//每一次都要将上一状态 的 后继集合 重置
memset(S,0,sizeof(S));
for(j = 0; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = 1; //将后继状态的SG函数值进行标记
for(j = 0;; j++) if(!S[j]){ //查询当前后继状态SG值中最小的非零值
SG[i] = j;
break;
}
}
}
Fibonacci again and again
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13311 Accepted Submission(s): 5807
Problem Description
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。
Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
Sample Input
1 1 1
1 4 1
0 0 0
Sample Output
Fibo
Nacci
题解
#include <stdio.h>
#include <string.h>
#define MAXN 1000 + 10
#define N 20
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,0,sizeof(SG));
for(i = 1; i <= n; i++){
memset(S,0,sizeof(S));
for(j = 0; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = 1;
for(j = 0;;j++) if(!S[j]){
SG[i] = j;
break;
}
}
}
int main(){
int n,m,k;
f[0] = f[1] = 1;
for(int i = 2; i <= 16; i++)
f[i] = f[i-1] + f[i-2];
getSG(1000);
while(scanf("%d%d%d",&m,&n,&k),m||n||k){
if(SG[n]^SG[m]^SG[k]) printf("Fibo\n");
else printf("Nacci\n");
}
return 0;
}