博弈论——取石子问题

博弈论——取石子问题
有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够取胜。

(一)巴什博奕(Bash Game):

只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。
显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走(k≤m)个,那么先取者再拿走m+1−k个,结果剩下 (m+1)×(r−1) 个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
即,若n=k∗(m+1),则后取着胜,反之,存在先取者获胜的取法。
n%(m+1)==0. 先取者必败。
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。
从一堆100个石子中取石子,最后取完的胜。

(二)威佐夫博奕(Wythoff Game):

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk=ak+k,奇异局势有
如下三条性质:
  1. 任何自然数都包含在一个且仅有一个奇异局势中。
  由于ak是未在前面出现过的最小自然数,所以有ak>ak−1,而bk=ak+k>ak−1+k−1=bk−1>ak−1。所以性质1.成立。
  2. 任意操作都可将奇异局势变为非奇异局势。
  事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由   于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
  3. 采用适当的方法,可以将非奇异局势变为奇异局势。
  假设面对的局势是(a,b),
   - 若 b=a,则同时从两堆中取走 a个物体,就变为了奇异局势(0,0);
  - 如果a=ak ,b>bk,那么,取走b−bk个物体,即变为奇异局势;
  - 如果a=ak,b<bk ,则同时从两堆中拿走 ak−ab−ak个物体,变为奇异局势( ab−ak , ab−ak+b−ak);
  - 如果a>ak ,b=ak+k,则从第一堆中拿走多余的数量a−a+k 即可;
   - 如果a<ak ,b=ak+k,分两种情况,
   · 第一种,a=aj (j<k),从第二堆里面拿走 b−bj 即可;
   · 第二种,a=bj (j < k),从第二堆里面拿走 b−aj 即可。

从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak=[k×(1+5√)2],bk=ak+k (k=0,1,2,…,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+5√)2=1.618…,因此,由ak,bk组成的矩形近似为黄金矩形,由于 2(1+5√)=(5√−1)2,可以先求出j=[(5√−1)2]。
若a=[j×(1+5√)2],那么a=aj,bj=aj+j,若不等于,那么a=aj+1,bj+1=aj+1+j+1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

(三)尼姆博奕(Nimm Game):

有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。

计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:

1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。
任何奇异局势(a,b,c)都有a(+)b(+)c =0。
如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。
获胜情况对先取者进行讨论:

  • 异或结果为0,先取者必败,无获胜方法。后取者获胜;
  • 结果不为0,先取者有获胜的取法。

拓展: 任给N堆石子,两人轮流从任一堆中任取(每次只能取自一堆),取最后一颗石子的人获胜,问先取的人如何获胜?
根据上面所述,N个数异或即可。如果开始的时候T=0,那么先取者必败,如果开始的时候T>0,那么只要每次取出石子使得T=0,即先取者有获胜的方法。

【综合一、三给出】

任给N堆石子,两人轮流从任一堆中任取(每次只能取自一堆),规定每方每次最多取K颗,取最后一颗石子的一方获胜.问先取的人如何获胜?

与上面的问题比,这个更复杂一些,我们可以这样做
令Bi=Aimod(K+1)
定义T′=B1⊕B2⊕…⊕Bn
如果T′=0 那么没有获胜可能,先取者必败
如果T′>0 那么必然存在取的方法,使得T′=0,先取者有获胜的方法
假设对方取了在Ai中取了r<=K个
如果Ai中剩下的石子多于K 那么就在Ai中取走K+1−r个则Bi不变 T′还是0
如果Ai<=K 那么我们需要重新计算Bi和T′ 按照上面的方法来做就可以了

转载自http://yjq24.blogbus.com/logs/42826226.html
代码参考https://blog.csdn.net/I_HOPE_SOAR/article/details/82344116

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值