二次剩余学习小计

二次剩余

  • x 2 ≡ n   ( m o d   p ) x^2\equiv n\ (mod\ p) x2n (mod p) p p p是奇素数。
  • 如果存在一个 n n n满足以上方程有解,那么就称 n n n p p p的一个二次剩余。

判断

  • 勒让德符号 ( p n ) = n p − 1 2 (^{n}_{p})=n^{\frac{p-1}{2}} (pn)=n2p1
  • ( p n ) = 1 (^{n}_{p})=1 (pn)=1:是二次剩余。因为如果是二次剩余的话,存在 n = n 1 2 \sqrt{n}=n^{\frac{1}{2}} n =n21,那么就有 n p − 1 ≡ 1 ( m o d   p ) \sqrt{n}^{p-1}\equiv1(mod\ p) n p11(mod p),即 n p − 1 2 ≡ 1 ( m o d   p ) n^{\frac{p-1}{2}}\equiv1(mod\ p) n2p11(mod p)
  • ( p n ) = − 1 (^{n}_{p})=-1 (pn)=1:不是1那不就只能是-1了吗。无二次剩余相当于是对于任意一个 i i i都存在一个 j j j使得 i j = n ( m o d   p ) , i ! = j ij=n(mod\ p),i!=j ij=n(mod p),i!=j,那么 ( p − 1 ) ! = n p − 1 2 (p-1)!=n^{\frac{p-1}{2}} (p1)!=n2p1(将 i , j i,j i,j两两组再一起),又有 ( p − 1 ) ! = − 1 (p-1)!=-1 (p1)!=1(除了1和p-1以外两两相乘为1),所以上式成立。
  • ( p n ) = 0 (^{n}_{p})=0 (pn)=0 p ∣ n p|n pn

开根号

  • 上面的判断并不是重点,关键是怎么求出来它的一个解。
  • 首先在 [ 0.. p − 1 ] [0..p-1] [0..p1]随机找到一个 a a a,令 w = a 2 − n w=a^2-n w=a2n,要求 ( p w ) = − 1 (^w_p)=-1 (pw)=1,解就是 ( a + w ) p + 1 2 (a+\sqrt w)^{\frac{p+1}{2}} (a+w )2p+1
  • 因为只有一半的 w w w是二次剩余,所以有 1 2 \frac{1}{2} 21的概率随机到,期望2次即可。
  • 证明:
  • 首先根据二项式定理可以得到 ( a + w ) p = a p + w p   ( m o d   p ) (a+\sqrt w)^p=a^p+\sqrt w^p \ (mod\ p) (a+w )p=ap+w p (mod p)
  • 因为 w p − 1 2 = − 1 w^{\frac{p-1}{2}}=-1 w2p1=1,所以 w p − 1 = − 1 \sqrt w^{p-1}=-1 w p1=1,所以 w p = − w \sqrt w^p=-\sqrt w w p=w
  • 还有 a p = a   ( m o d   p ) a^p=a\ (mod\ p) ap=a (mod p)
  • 所以 ( a + w ) p = a p + w p = a − w   ( m o d   p ) (a+\sqrt w)^p=a^p+\sqrt w^p =a-\sqrt w\ (mod\ p) (a+w )p=ap+w p=aw  (mod p)
  • 那么 ( a + w ) p + 1 = ( a + w ) ( a − w ) = a 2 − w = n (a+\sqrt w)^{p+1}=(a+\sqrt w)(a-\sqrt w)=a^2-w=n (a+w )p+1=(a+w )(aw )=a2w=n
  • 所以如果存在解的话,那么这个解就是 ( a + w ) p + 1 2 (a+\sqrt w)^{\frac{p+1}{2}} (a+w )2p+1
  • 需要注意的是 w \sqrt w w 实际上在 m o d   p mod\ p mod p意义下是没有值的,但是因为这个解是存在的,所以只需要带入一个 ( a + b w ) (a+b\sqrt w) (a+bw )进去快速幂,最后的 w \sqrt w w 是会被消掉的。

luogu5491

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long 
#define ull unsigned long long
using namespace std;

ll T,n,p;
ull sd;
ll rd(){
	sd^=sd>>7,sd^=sd<<19,sd^=sd>>29;
	return sd>>1;
}

ll ksm(ll x,ll y){
	ll s=1;
	for(;y;y/=2,x=x*x%p) if (y&1)
		s=s*x%p;
	return s;
}

ll W;
struct num{ll a,b;num(ll _a=0,ll _b=0){a=_a,b=_b;}};
num operator*(num x,num y){return num((x.a*y.a+x.b*y.b%p*W)%p,(x.a*y.b+x.b*y.a)%p);}
ll Ksm(ll a,ll y){
	num s(1,0),x(a,1);
	for(;y;y/=2,x=x*x) if (y&1)
		s=s*x;
	return s.a;
}

int main(){
	scanf("%lld",&T);
	sd=19260817;
	while (T--){
		scanf("%lld%lld",&n,&p);
		ll tp=ksm(n,(p-1)/2);
		if (tp==1){
			ll a=rd()%p,w=(a*a-n+p)%p;
			while (ksm(w,(p-1)/2)==1) a=rd()%p,w=(a*a-n+p)%p;
			W=w; ll x=Ksm(a,(p+1)/2);
			x=min(x,p-x);
			printf("%lld %lld\n",x,p-x);
		} else 
		if (tp==p-1) printf("Hola!\n"); 
		else printf("0\n");
	}
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值