Description
- 求多少个 [ 0 , m − 1 ] [0,m-1] [0,m−1]的集合大小为 n n n且xor和为0,。
- n ≤ 3000 , m ≤ 2 3 e 6 , n l o g m ≤ 3.5 e 7 n\le 3000,m\le 2^{3e6},n\ log\ m\le 3.5e7 n≤3000,m≤23e6,n log m≤3.5e7
Solution
- 首先算出可重有序,枚举第一个小于 m m m的位置出现在哪里,那么其中一个在确定 n − 1 n-1 n−1个之后也是确定的(后面的位置可以任意选),因此假设 a a a为这一位选1的方案数, b b b为这一位选0的方案数,则:
f n = ∑ i = 0 n − 1 [ i m o d 2 = 0 ] ( n i ) a i b n − i − 1 f_n=\sum_{i=0}^{n-1}[i\ mod\ 2=0]\binom{n}{i}a^ib^{n-i-1} fn=i=0∑n−1[i mod 2=0](in)aibn−i−1
-
可以简单化简出带有 ( b + a ) n + ( b − a ) n (b+a)^n+(b-a)^n (b+a)n+(b−a)n的东西。
-
这题的主要难点在于容斥,我们上面算出可重有序的方案数,但是要求的是不可重无序的方案数,问题在于怎么容斥。
-
考虑两种方案等价相当于有一种置换可以转换,因此可以考虑类似burnside的东西:
A n s = 1 n ! ∑ p f ( p ) ( − 1 ) α ( p ) Ans=\frac{1}{n!}\sum_{p}f(p)(-1)^{\alpha(p)} Ans=n!1p∑f(p)(−1)α(p) -
其中 p p p为一个置换, α ( p ) \alpha(p) α(p)为 p p p的逆序对个数, f ( p ) f(p) f(p)表示等价类为 p p p的方案数为多少。
-
理解: ( − 1 ) α ( p ) (-1)^{\alpha(p)} (−1)α(p)容斥掉重复,burnside容斥掉有序。
-
接下来证明 ( − 1 ) α ( p ) (-1)^{\alpha(p)} (−1)α(p)恰好可以容斥掉重复的情况,首先逆序对假设是 ( i , p i ) (i,p_i) (i,pi)为1的矩阵的行列式,那么考虑交换两个点的编号(包括连出去的和连向它的点)相当于交换两行两列,因此不妨将同一个环内的数连续放,那么现在只需要考虑一个环内部的逆序对情况,由于一共有 c ! c! c!种方案,只有当 c = 1 c=1 c=1时行列式才为1,否则为0,所以只有环大小为1才会有贡献。
-
然后考虑DP计算 p p p的贡献,可以分为偶环和奇环,转移枚举环的大小 k k k,如果是偶环逆序对个数为 − 1 -1 −1,乘上环内方案数 ( k − 1 ) ! (k-1)! (k−1)!,偶环贡献到 f f f就是 m m m,奇环贡献到 f f f就是前面可重有序的方案数。
-
因此记 f [ i ] [ j ] f[i][j] f[i][j]表示 i i i个点的排列, j j j个奇环的贡献,可以前缀和优化。
-
还有另外一种容斥系数的理解方式。
-
考虑我们最后枚举等价类编号是有影响的,因此是一个EGF,单独考虑一个数所有它的环,不妨假设一个环的生成函数是:
A ( x ) = ∑ i > 0 a i i ! x i A(x)=\sum_{i>0}\frac{a_i}{i!}x^i A(x)=i>0∑i!aixi
- 那么它的组合要求:
e A ( x ) − 1 = x e^{A(x)}-1=x eA(x)−1=x
- 得到 A ( x ) = l n ( x + 1 ) = ∑ n > 0 ( − 1 ) n − 1 n x n A(x)=ln(x+1)=\sum_{n>0}\frac{(-1)^{n-1}}{n}x^n A(x)=ln(x+1)=∑n>0n(−1)n−1xn
- 因此 a i = ( − 1 ) i − 1 ( i − 1 ) ! a_i=(-1)^{i-1}(i-1)! ai=(−1)i−1(i−1)!