Hadoop实例学习(七)Shuffle机制与Partition分区


Shuffle机制

什么是Shuffle

数据从Map阶段传递给Reduce阶段的过程就叫Shuffle,所以Shuffle的作用范围是Map阶段数据输出到Reduce阶段数据输入这一整个中间过程,Shuffle机制是整个MapReduce框架中最核心的部分,就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序

总的一句话:shuffle就是在map方法之后,reduce方法之前的操作,其操作包括了分区和排序,若是没有reduce的话就不进行shuffle操作

Shuffle图解

在这里插入图片描述

工作机制

  • Collect阶段:一个切片Input Split对应一个Mapper,将MapTask的结果输出到默认大小为100M的环形缓冲区,保存的是key/value序列化数据,Partition分区信息等。
  • Spill阶段:当内存中的数据量达到一定的阀值(默认阀值80%)的时候,就会将溢出数据写入本地磁盘,写入到磁盘的时候它并不是简单地将数据溢出写入,而是先进行分区,再在每个分区里对数据进行合并(Combiner)。
  • .Merge阶段:最后它会将溢出的临时文件进行一次合并操作,并且是相同分区号的数据进行合并以确保一个MapTask最终只产生一个中间数据文件。
  • .Copy阶段:ReduceTask启动Fetcher线程到已经完成MapTask的节点上复制一份属于自己的数据,这些数据默认保存在内存的缓冲区中,当内存的缓冲区达到一定的阀值的时候,就会将数据写到磁盘之上。
  • AgainMerge阶段:数据再次进行合并,将多个溢写文件归并成一个溢写文件
  • Sort阶段:在对数据进行合并的同时,会进行排序操作,由于MapTask阶段已经对数据进行了局部的排序,ReduceTask只需保证Copy的数据的最终整体有效性即可
    在这里插入图片描述

Partition分区类别与规则

  • Partition分区:按照一定的分区规则,将key value的list进行分区。
  • 分区的创建分为默认的和自定义两种。

默认分区

  • 默认分区是根据key的hashCode对ReduceTasks个数取模得到的。
  • 用户没法控制哪个key存储到哪个分区。
public class HashPartitioner<K,V> extends Partitioner<K,V>{
    public int getPartition(K key,V value, int numReduceTasks){
        return(key.hashCode()& Integer.MAX_VALUE) % numReduceTasks;
    }
}

自定义分区

  • 自定义类继承Partitioner,重写getPartition()方法
public class xxx extends Partitioner<Text, xxx>{
    @Override
    public int getPartition(Text key,xxx value, int numReduceTasks){
        // 控制分区代码逻辑
        ...
        ...
        ...
            return Partition;
    }
}
  • 设置自定义Partitioner:job.setPartitionerClass(CustomPartitioner.class);
  • 根据自定义Partitioner的逻辑来设置ReduceTask的数量:job.setNumReduceTasks(n);

分区规则

  • 如果ReduceTask的数量=1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个ReduceTask,只会产生一个结果文件part-r-00000

  • 如果1<ReduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会报错

  • 如果ReduceTask的数量>getPartition的结果数,则会多产生几个空的输出文件part-r-000xx

  • 分区号必须从零开始,逐一累加

int n=5;  //设置5个分区
job.setNumReduceTasks(n)
当n=1时
job.setNumReduceTasks(1)  输出一个结果
当n=2,3,4时
job.setNumReduceTasks(2/3/4) 输出错误
当n=6时
job.setNumReduceTasks(6) 正常运行,但是会产生空文件

Partition分区实例

实现目的

在原有的基础上实现
将手机号159、135、137、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中

!!!

红框里的java类为新建的
在这里插入图片描述

编写Partition类

调用serialization包里的类

package Partition;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import serialization.FlowBean;
import serialization.FlowMapper;
import serialization.FlowReducer;

import java.io.IOException;

public class PartitionerDriver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        // 1 获取job实例
        Job job = Job.getInstance(new Configuration());

        // 2.设置类路径
        job.setJarByClass(PartitionerDriver.class);

        // 3 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);


        // 4 指定自定义数据分区
        job.setPartitionerClass(SetPartition.class);

        // 5 同时指定相应数量的reduce task
        job.setNumReduceTasks(5);

        // 6 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        // 7 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 8 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path("E:\\hadoop\\mapreducedemo\\Input"));
        FileOutputFormat.setOutputPath(job, new Path("E:\\hadoop\\mapreducedemo\\output"));

        // 9 将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值