为什么HashMap中在链表与数组的选择时选择了数组?
因为使用链表的话访问查询会比较低(get方法),在ArrayList中可以直接使用下表来获取数据,但是链表需要一个位置一个位置遍历来查询。
在HashMap中get和put使用的频率都是非常的高的,所以我们也需要同时去保证他们的效率。
JDK 1.8 前 : 数组 + 链表
put方法:
● 通过 key 的 hashCode 经过 扰动函数(hash()) 处理过后得到 hash 值
● 通过 (n - 1) & hash (高效的求余数的办法,相当于)判断当前元素存放的位置(n 指的是数组的长度)
● 如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同
● 如果相同的话,直接覆盖,不相同就通过 拉链法 解决冲突
源码:
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous(以前的) value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
// 如果table={}
if (table == EMPTY_TABLE) {
//初始化
inflateTable(threshold);
}
//查看key是否位null
if (key == null)
return putForNullKey(value);
//对key求hash
int hash = hash(key);
//Returns index for hash code h.
int i = indexFor(hash, table.length);
//从第i个位置的table开始 该节点是否位null(是否是最后一个节点,是退出循环)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//hash值是否相等,key是否相等。如果不相等先取到旧值,再覆盖,最后将久值返回
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;//保存旧值
e.value = value;//覆盖
e.recordAccess(this);
return oldValue;//返回久值
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
addEntry 方法
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
createEntry方法
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
//新建一个节点,并把它放到table的前面
//创建新节点 Entry(int h, K k, V v, Entry<K,V> n)//Creates new entry.
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
// indexFor 根据hash值计算table中的i的大小
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}
在put开头会先判断table={}是否成立,是则对hashmap进行初始化
The next size value at which to resize (capacity * load factor).
int threshold;
inflateTable方法
/**
* Inflates the table.
*/
private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}
roundUpToPowerOf2 方法
//找到一个大于或等于number的2的幂
private static int roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative";
// number <= 1 , number = 1
// number > 1 时 :number是否是大于MAXIMUM_CAPACITY,如果大于MAXIMUM_CAPACITY那么容量就等于MAXIMUM_CAPACITY。如果小于那么就先number减1,然后翻倍在求翻倍后的小于等于参数的最大2的幂的值
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
}
highestOneBit方法 (图解)
//获取小于等于参数的最大2的幂的值
public static int highestOneBit(int i) {
// HD, Figure 3-1
i |= (i >> 1);
i |= (i >> 2);
i |= (i >> 4);
i |= (i >> 8);
i |= (i >> 16);
return i - (i >>> 1);
}
扩容:
addEntry方法
/**
* The number of key-value mappings contained in this map.
*/
transient int size;//这个映射中包含的键值映射的数量
/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
// If table == EMPTY_TABLE then this is the initial capacity at which the
// table will be created when inflated.
int threshold;//要调整大小的下一个大小值(容量负载因子) 16 * 0.75
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
resize方法
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
//new一个新对象 容量为newCapacity
Entry[] newTable = new Entry[newCapacity];
//
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
transfer方法
//Transfers all entries from current table to newTable.
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;//新数组的容量
// 遍历桶(table)
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
//rehash
if (rehash) {
//key 是否为空, 是 e.hash = 0 否 再hash
e.hash = null == e.key ? 0 : hash(e.key);
}
//算出新的数组下标
int i = indexFor(e.hash, newCapacity);
//将当前的旧数组的下一个元素 指向 新数组中计算出来的对应元素中
e.next = newTable[i];
//
newTable[i] = e;
//将next作为数组的头部
e = next;
}
}
}
上面的扩容时,在单线程的时候是不会出问题的,但是在多线程的情况下,会出现死锁。
hash函数
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
使用的是头插法:因为如果是尾插法需要从头部依次遍历找打最后一个元素进行插入(最后一个节点next==null),这样就需要花费时间遍历。所以1.7使用的是头插法。
get方法:
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
getForNullKey方法
private V getForNullKey() {
if (size == 0) {
return null;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
getEntry方法
//获取节点
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
// key ==null 返回0,否则返回key的hash值
int hash = (key == null) ? 0 : hash(key);
//计算楚下标,
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
//hash值相等并且key相等 那么e就是想找的节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
注意: (n - 1) & hash 相当于 hash % n, (n - 1) & hash 是一种高效的求余数的办法。在默认容量16时,&操作只需要留下最后的4位,前面的都可以舍去。 因为比8更高位的都来自于8的2次幂,所以高位的1都是可以整除8,可以直接舍弃。(只有除数是2n才可以这样的操作)
0 0 0 0 0 0 0 0 0
256 128 64 32 16 8 4 2 1
直接&8的话是不行的,假设最后四位是1XXX,那么1XXX&1000=1000,很明显对8取余得到的结果不可能是8,余数应在0到除数减一之间,所以我们需要对&7,让取余结果最大在0-7之间。这就是为什么要&(2n-1)。