sklearn preprocessing 数据预处理(OneHotEncoder)

本文介绍了如何使用sklearn的StandardScaler进行数据标准化,以及详细讲解了OneHotEncoder的工作原理和用法,包括如何对label和categorical feature进行编码,并展示了编码过程。同时提供了OneHotEncoder的属性feature_indices_和n_values_的含义。
摘要由CSDN通过智能技术生成
                       

0. StandardScaler

去均值时,在测试集上进行预测时减去的均值是训练集上得到的均值;

import sklearn.preprocessing as prepdef standard_scale(X_train, X_test): preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_test = preprocessor.transform(X_test) return X_train, X_test
  
  
  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

1. on

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值