机器学习反向传播梯度求导

机器学习反向传播梯度推导

在我的前一篇文章中,已经推导出了单层感知机梯度的计算公式
多层感知机梯度推导
在这里插入图片描述
φ E φ W j k = ( 0 k − t k ) 0 k ( 1 − 0 k ) W j 0 \frac {\varphi_E} {\varphi_{W_{j_k}}} = (0_k - t_k)0_k(1 - 0_k) W_j^0 φWjkφE=(0ktk)0k(10k)Wj0
1. 链式法则:
φ f ( x ) φ g ( x ) = φ f ( x ) φ h ( x ) φ h ( x ) φ g ( x ) \frac {\varphi f(x)} {\varphi g(x)} = \frac {\varphi f(x)} {\varphi h(x)} \frac {\varphi h(x)} {\varphi g(x)} φg(x)φf(x)=φh(x)φf(x)φg(x)φh(x)
在这里插入图片描述
φ E φ W j k 1 = φ E φ W j k 2 φ W j k 2 φ W j k 1 \frac {\varphi_E} {\varphi_{W_{j_k}^1}} = \frac {\varphi_E} {\varphi_{W_{j_k}^2}} \frac {\varphi_{W_{j_k}^2}} {\varphi_{W_{j_k}^1}} φWjk1φE=φWjk2φEφWjk1φWjk2

2. bpnn推导:
在这里插入图片描述
注 : Σ , σ 为 激 活 函 数 , 同 时 O j J = σ ( x j J ) 注: \Sigma, \sigma为激活函数,同时O_j^J = \sigma(x_j^J) :Σ,σOjJ=σ(xjJ)

所 以 : φ E φ W j k K = ( O k K − t k ) O k K ( 1 − O k K ) O j J 所以:\frac {\varphi_E} {\varphi_{W_{j_k}^K}} = (O_k^K - t_k)O_k^K(1 - O_k^K) O_j^J φWjkKφE=(OkKtk)OkK(1OkK)OjJ
φ E φ W j k K = ( O k K − t k ) δ k O j J \frac {\varphi_E} {\varphi_{W_{j_k}^K}} = (O_k^K - t_k)\delta_k O_j^J φWjkKφE=(OkKtk)δkOjJ
那 么 现 在 的 关 键 就 是 求 出 φ E φ W i j J 以 及 找 出 下 一 层 权 值 梯 度 与 上 一 层 权 值 梯 度 的 关 系 , 依 次 迭 代 那么现在的关键就是求出\frac {\varphi_E} {\varphi_{W_{i_j}^J}}以及找出下一层\\权值梯度与上一层权值梯度的关系,依次迭代 φWijJφE,
φ E φ W i j J = φ 1 2 Σ i = 0 m ( O k K − t k ) 2 φ W i j J \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = \frac {\varphi{{\frac 1 2}\Sigma_{i=0}^m(O_k^K - t_k)^2}} {\varphi_{W_{i_j}^J}} φWijJφE=φWijJφ21Σi=0m(OkKtk)2
对 W i j J 的 导 数 有 影 响 的 只 有 O k K , 所 以 : 对 {W_{i_j}^J} 的导数有影响的只有O_k^K,所以: WijJOkK,
φ E φ W i j J = φ 1 2 ( O k K − t k ) 2 φ W i j J \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = \frac {\varphi{{\frac 1 2}(O_k^K - t_k)^2}} {\varphi_{W_{i_j}^J}} φWijJφE=φWijJφ21(OkKtk)2
φ E φ W i j J = ( O k K − t k ) φ O k K φ W i j J \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = (O_k^K - t_k){\frac {\varphi{O_k^K }} {\varphi_{W_{i_j}^J}}} φWijJφE=(OkKtk)φWijJφOkK
φ E φ W i j J = ( O k K − t k ) φ σ ( x k K ) φ W i j J \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = (O_k^K - t_k) \frac {\varphi{\sigma(x_k^K)}} {\varphi_{W_{i_j}^J}} φWijJφE=(OkKtk)φWijJφσ(xkK)
φ E φ W i j J = ( O k K − t k ) O k K ( 1 − O k K ) φ x k K φ W i j J \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = (O_k^K - t_k)O_k^K(1 - O_k^K) \frac {\varphi_{x_k^K}} {\varphi_{W_{i_j}^J}} φWijJφE=(OkKtk)OkK(1OkK)φWijJφxkK
使 用 链 式 法 则 : φ E φ W i j J = ( O k K − t k ) O k K ( 1 − O k K ) φ x k K φ O j J φ O j J φ W i j J 使用链式法则: \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = (O_k^K - t_k)O_k^K(1 - O_k^K) \frac {\varphi_{x_k^K}} {\varphi_{O_j^J}} \frac {\varphi_{O_j^J}} {\varphi_{W_{i_j}^J}} 使φWijJφE=(OkKtk)OkK(1OkK)φOjJφxkKφWijJφOjJ
φ E φ W i j J = ( O k K − t k ) δ k K W j k φ O j J φ W i j J \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = (O_k^K - t_k)\delta_k^K W_{j_k}\frac {\varphi_{O_j^J}} {\varphi_{W_{i_j}^J}} φWijJφE=(OkKtk)δkKWjkφWijJφOjJ
φ E φ W i j J = ( O k K − t k ) δ k K W j k φ σ ( x j J ) φ W i j J \frac {\varphi_E} {\varphi_{W_{i_j}^J}} = (O_k^K - t_k) \delta_k^K W_{j_k} \frac {\varphi_{\sigma(x_j^J)}} {\varphi_{W_{i_j}^J}} φWijJφE=(OkKtk)δkKWjkφWijJφσ(xjJ)
类 似 于 上 一 层 推 导 : φ E φ W i j J = ( O k K − t k ) δ k K W j k δ j J x j 0 类似于上一层推导:\\ \frac {\varphi_E} {\varphi_{W_{i_j}^J}} =(O_k^K - t_k) \delta_k^K W_{j_k} \delta_j^J x_j^0 φWijJφE=(OkKtk)δkKWjkδjJxj0
神经网络计算过程:

  1. 通过前向传播计算出训练结果
  2. 将训练结果通过反向传播作用于梯度下降
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值