神经网络反向传播算法求导过程理解

一、神经网络反向传播时的梯度到底怎么求?

利用下面两条原则,便可大杀四方

1.对于矩阵、向量求导先当做一维实数使用链式法则求导,然后做维数相容调整(前后换序、转置),使之符合矩阵乘法原则且维数相容是快速准确的策略。
2.逐维求导,在公式中是点乘的形式。

参考链接:
https://zhuanlan.zhihu.com/p/22473137
梯度是如何计算的 小小将

二、神经网络反向传播过程示例

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

这里需要说明的是∂L/∂wji的L是指Ltotal总的Loss,即每个下标的z和t计算完损失后,对1到c所有下标的结果进行求和最终只得到一个数Ltotal。所以计算∂L/∂yj时,实际上L已经包含了yj前向传播时会经过的全部路径,拿y1举例,Ltotal对y1求导时相当于拆分成L1,L2一直到LC对y1分别进行求导然后求和,其中比如LC对y1进行求导等同于(zc-tc)对y1进行求导,就已经包含了y1到zc的路径了。

具体的细节还可以参考这篇文章:https://blog.csdn.net/ft_sunshine/article/details/90221691?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522165293191816781432932775%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=165293191816781432932775&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-90221691-null-null.142v10control,157v4control&utm_term=%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E6%8E%A8%E5%88%B0&spm=1018.2226.3001.4187

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值