牛客编程巅峰赛S2第6场

牛牛做除法II

题目描述

牛牛想知道在[0,n]范围中,选取一个最大的数x,满足x%a=b,不过这个范围可能会很大,牛牛不知道该如何解决,所以他想请你帮忙。
给定如上所述的a,b,n,返回满足条件的最大的x。

示例1

输入

2,0,2

返回值

2

思路:x%a = b; => x = ka+b;
k 越大 x越大。可得k
a+b <= n
=>k <= (n-b)/a; 求出k最大,即求出x最大。

class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     * 返回满足条件的最大的x。
     * @param a int整型 代表题意中的a
     * @param b int整型 代表题意中的b
     * @param n int整型 代表题意中的n
     * @return int整型
     */
    int solve(int a, int b, int n) {
        // write code here
        int k = (n-b)/a;
        return k*a+b;
    }
}; 

String II

题目描述

给出一个仅包含小写字母的字符串s,你最多可以操作k次,使得任意一个小写字母变为与其相邻的小写字母(ASCII码差值的绝对值为1),请你求出可能的最长相等子序列(即求这个字符串修改至多k次后的的一个最长子序列,且需要保证这个子序列中每个字母相等)。

子序列:从原字符串中取任意多个字母按照先后顺序构成的新的字符串。

示例1
输入

2,“abcde”

返回值

3

数据范围小,直接暴力。

class Solution {
public:
    /**
     * 
     * @param k int整型 表示最多的操作次数
     * @param s string字符串 表示一个仅包含小写字母的字符串
     * @return int整型
     */
    int string2(int k, string s) {
        // write code here
        int n = s.length(),ans=0;
        for(char ch = 'a';ch <= 'z';ch++){//要转化的字符
            int cur = 0,tmp = k;
            for(int dis = 0;dis<26;dis++){
                for(int i=0;i<n;i++){
                    if(abs(ch-s[i]) == dis && tmp >= dis){
                        tmp -= dis;
                        cur++;
                    }
                }
            }
            ans = max(ans,cur);
        }
        return ans;
    }
};

Bang! Bang!

题目描述

音游狂热爱好者牛牛接到了一个新的任务,那就是给一张乐谱设计重音符。每当玩家敲击重音符的时候就会发出"bang"的美妙声音!!
每一张乐谱都有nn个音符从左到右一字排开,现在牛牛的任务就是选出其中mm个音符将其标记为重音符,同时任意两个重音符之间都必须隔着至少kk个音符。
一个有意思的问题诞生了,请求出这样合法的设计方案种数,并输出答案对10000000071000000007取模的结果。

示例1
输入

3,2,1

返回值

1

dp[i][j]表示第i个字符放在第j个位置的方案数。
dp[i][j] = dp[i-1][0] + dp[i-1][1] + … + dp[i-1][j-k-1]

答案: dp[m][0] + dp[m][1] + … +dp[m][n]
我们发现计算的东西可以累加的 ,其实
dp[i][j] = dp[i][j-1] + dp[i-1][j-k-1]
这样每次的状态的转移可以到O(1)

class Solution {
public:
    /**
     * 
     * @param n int整型 乐谱总音符数
     * @param m int整型 重音符数
     * @param k int整型 重音符之间至少的间隔
     * @return long长整型
     */
    long long solve_bangbang(int n, int m, int k) {
        // write code here
        int mod = 1000000007;
        if(m==0) return 1;
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        dp[0][0]=1;
        
        for(int i=1;i<=n;i++){
            dp[1][i] = 1;
        }
        for(int i=2;i<=m;i++){
            for(int j=k+2;j<=n;j++){
                dp[i][j] = (dp[i][j-1] + dp[i-1][j-k-1])%mod;
            }
        }
        int ans = 0;
        for(int i=0;i<=n;i++){
            ans = (ans + dp[m][i]) % mod;
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值