HDU 6798 Triangle Collision (二分+几何)

本文介绍了一种使用二分搜索和几何原理解决等边三角形内小球运动轨迹预测的问题,通过复制三角形并计算反射路径,实现了对小球第k次碰撞时刻的精确求解。

题意:边长为L的等边三角形内有一颗小球,给出初始位置和速度,求第k次与边碰撞是在什么时候。

题解:二分+几何
把三角形复制成如下图,点每一次反射我们考虑成是经过了多少条边即可。
在这里插入图片描述
对于三角形下面一条边,是x轴,可以直接得到。
对于三角形左右的边,我们要进行旋转,即获得以左右两边为x轴时,点的坐标和速度。

eps改1e-6能过。

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
const double eps = 1e-6;
const double pi = acos(-1.0);
int t;
double l, x, y, vx, vy, k;
double h;
double solve(double y, double vy, double t) {
	return abs(floor((y + vy * t) / h));
}
bool check(double mid) {
	double res = solve(y, vy, mid) +
		solve(fabs((y + sqrt(3) * x - h) / 2), (-sqrt(3) * vx - vy) / 2, mid) +
		solve(fabs((-y + sqrt(3) * x + h) / 2), (vx * sqrt(3) - vy) / 2, mid);
	return res >= k;
}
int main() {
	scanf("%d", &t);
	while (t--) {
		scanf("%lf%lf%lf%lf%lf%lf", &l, &x, &y, &vx, &vy, &k);
        h = l * sqrt(3) / 2;
		double l = 0, r = 1e11, mid;
		while (r - l > eps) {
			mid = (l + r) / 2;
			if (check(mid))
				r = mid;
			else
				l = mid;
		}
        printf("%.8f\n", mid);
	}
	return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值