HDU 6798 Triangle Collision 镜像原理+坐标轴旋转

这道题比较考思维吧  首先 在三角形内部的反射 去求反射角比较麻烦 时间上也不允许  我们要利用反射的原理  把这个平面衍生成一个由正三角形 镶嵌构成的平面   那第k次碰撞就是  由这个球的坐标 及其速度 构成的射线  与平面内等边三角形的第k次相交  其他博客图很多 可以去看看

然后  我们二分一个时间  看这个时间 与整个平面有几个交点  

首先看 和x轴平行的线  容易得出  交点个数为 floor(2*y/(\sqrt{3}*L))  floor的意思是 取小于等于当前小数的最大整数

另外两种 我们可以将坐标点 分别绕 等边三角形的中心  旋转 120度或者240度 即可 (等价于旋转坐标轴  变成以三角形的某条底边为x轴 对应的高为y轴的坐标系)

#include<bits/stdc++.h>
using namespace std;
double h,L,x,y,vx,vy;
int k;
const double eps = 1e-6;
const double pi = acos(-1);
const double base = 2*pi/3;
#define pa pair<double,double>
typedef long long ll;
ll solve(pa pt){
	return abs(floor(pt.second/h));
}
pa rot(double x,double y,double rad){
	return make_pair(x*cos(rad)-(y-h/3)*sin(rad),x*sin(rad)+(y-h/3.0)*cos(rad)+h/3);
}
bool check(double ti){
	double nx=x+ti*vx,ny=y+ti*vy; 
	return (solve(rot(nx,ny,0*base))+solve(rot(nx,ny,1*base))+solve(rot(nx,ny,2*base)))>=(ll)k;
}
int main(){
	int t;
	scanf("%d",&t);
	while(t--){
		scanf("%lf%lf%lf%lf%lf%d",&L,&x,&y,&vx,&vy,&k);
		h=L*sqrt(3)/2;
		double l=0,r=1e11;
		while(r-l>eps){
			double mid = (l+r)/2;
			if(check(mid)) r=mid;
			else l=mid;
		}
		printf("%.8lf\n",(l+r)/2);
	}
	return 0;
}

 

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页