hdu6230 2017CCPC 哈尔滨A Palindrome

题意

给你一个1e5的字符串,让你求出子串的数量,使得子串满足:
长度为3n−23n−2,且[1,2n−1][1,2n−1]和[n,3n−2][n,3n−2]都是回文串。

思路

这两个回文串长度都是奇数 manachar求出每个位置的最长回文半径

那么假设两个回文中心为i j 那么需满足 i + r[i] ≥ j  && j − r[j] ≤ i 用树状数组离线求答案

G[i - r[i]].push_back(i);//G[这个位置开始的].push_back(覆盖到哪里);

遍历字符串 每次将i之前的所能覆盖到的位置update(+1)

ans += sum(当前i的边界 - i);//满足上式的区段

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#include<cstring>

using namespace std;
const int MaxN = 1e6 + 5;
typedef long long LL;

int t,n,p[MaxN],tree[MaxN],r[MaxN];
char s[MaxN],S[MaxN];

vector<int> G[MaxN];

void getS(){
	n = strlen(s + 1);
	S[0] = '@';
	for(int i = 1;i <= n; i++){
		S[i * 2 - 1] = '#';
		S[i * 2] = s[i];
	}
	S[n * 2 + 1] = '#';
	S[n * 2 + 2] = '$';
	n = n * 2 + 2;
}

void manachar(){
	int mx = 0,C = 0,ans = 0;
	for(int i = 1;i < n; i++){
		if(mx > i) p[i] = min(mx - i,p[2 * C - i]);
		else p[i] = 1;
		while(S[i + p[i]] == S[i - p[i]]) p[i]++;
		if(p[i] + i > mx){
			mx = p[i] + i;
			C = i;
//			if(p[i] > ans){
//				ans = p[i];
//				A = i;
//			}
		}
	}
}

void update(int x){
	for(int i = x;i <= n; i += i & (-i)){
		tree[i] += 1;
	}
}

LL sum(int x){
	LL cur = 0;
	for(int i = x;i;i -= i & (-i)){
		cur += tree[i];
	}
	return cur;
}

int main()
{
	scanf("%d",&t);
	while(t--){
		scanf("%s",s + 1);
		memset(p,0,sizeof p);
		memset(r,0,sizeof r);
		getS();
		manachar();
		for(int i = 0;i <= n; i++){
			tree[i] = 0;
			G[i].clear();
		}
		for(int i = 1;i <= n / 2; i++){
			r[i] = p[i * 2] / 2;
			G[i - r[i]].push_back(i);
		}
		LL ans = 0;
		for(int i = 1;i <= n / 2; i++){
			for(int j = 0;j < G[i - 1].size(); j++) update(G[i - 1][j]);
			ans += sum(i + r[i] - 1) - sum(i);
		}
		printf("%lld\n",ans);
	}
}

 

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页