题目
在计算机界中,我们总是追求用有限的资源获取最大的收益。
现在,假设你分别支配着 m 个 0 和 n 个 1。另外,还有一个仅包含 0 和 1 字符串的数组。
你的任务是使用给定的 m 个 0 和 n 个 1 ,找到能拼出存在于数组中的字符串的最大数量。每个 0 和 1 至多被使用一次。
注意:
给定 0 和 1 的数量都不会超过 100。
给定字符串数组的长度不会超过 600。
示例 1:
输入: Array = {“10”, “0001”, “111001”, “1”, “0”}, m = 5, n = 3
输出: 4
解释: 总共 4 个字符串可以通过 5 个 0 和 3 个 1 拼出,即 “10”,“0001”,“1”,“0” 。
示例 2:
输入: Array = {“10”, “0”, “1”}, m = 1, n = 1
输出: 2
解释: 你可以拼出 “10”,但之后就没有剩余数字了。更好的选择是拼出 “0” 和 “1” 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/ones-and-zeroes
思考
这题一开始以为是贪心,按照最短的贪心方式的话,“11” ,“001”,“001”,m=4,n=2,选最短就是"11",但是答案应该是"001",“001”,所以这个贪心策略失效,这个问题与字符的顺序也没有关系,其他贪心的策略也想不到.这道题有点像资源管理,仔细一想,好像就是动态规划背包问题,只不过,这里背包大小变成了 0,1的多少,成了二维的,0,1都要满足条件.
这里没有表示选择物体的维度,使用了跟动态数组一样的方法,只不过便成了二维的
为了表示一个点的状态,使用二维数组dp(a,b)表示在a个0,b个1的情况下最多的字符串的个数,因为这里是01背包,对两个维度都是用逆序来计算,后面的就顺理成章
- 注意 dp[j0][j1]=max(dp[j0][j1],dp[j0-need0][j1-need1]+1) 背包问题总是忘记加max!! 切记
代码
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(110,vector<int>(110,0));
for(int i=0;i<strs.size();i++)
{
int need0=0,need1=0;//记录0,1个数
for(int p=0;p<strs[i].length();p++)
{
if(strs[i][p]=='0') need0++;
else need1++;
}
for(int j0=m;j0>=0;j0--)//倒叙遍历0
{
for(int j1=n;j1>=0;j1--)//倒序遍历1
{
if(j0>=need0&&j1>=need1)
{
dp[j0][j1]=max(dp[j0][j1],dp[j0-need0][j1-need1]+1);//(*)转移方程
}
}
}
}
return dp[m][n];
}
};
种下一棵树最好的时候是十年前,其次是现在.