leetcode 474

本文探讨了一道计算机科学领域的经典问题:如何利用动态规划解决资源分配问题,具体是在有限的0和1资源下,拼凑出数组中尽可能多的字符串。文章深入分析了贪心算法为何在此题中失效,并详细解析了动态规划解决方案的设计思路及代码实现。
摘要由CSDN通过智能技术生成

题目

在计算机界中,我们总是追求用有限的资源获取最大的收益。

现在,假设你分别支配着 m 个 0 和 n 个 1。另外,还有一个仅包含 0 和 1 字符串的数组。

你的任务是使用给定的 m 个 0 和 n 个 1 ,找到能拼出存在于数组中的字符串的最大数量。每个 0 和 1 至多被使用一次。

注意:

给定 0 和 1 的数量都不会超过 100。
给定字符串数组的长度不会超过 600。

示例 1:

输入: Array = {“10”, “0001”, “111001”, “1”, “0”}, m = 5, n = 3
输出: 4

解释: 总共 4 个字符串可以通过 5 个 0 和 3 个 1 拼出,即 “10”,“0001”,“1”,“0” 。

示例 2:

输入: Array = {“10”, “0”, “1”}, m = 1, n = 1
输出: 2

解释: 你可以拼出 “10”,但之后就没有剩余数字了。更好的选择是拼出 “0” 和 “1” 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/ones-and-zeroes

思考

这题一开始以为是贪心,按照最短的贪心方式的话,“11” ,“001”,“001”,m=4,n=2,选最短就是"11",但是答案应该是"001",“001”,所以这个贪心策略失效,这个问题与字符的顺序也没有关系,其他贪心的策略也想不到.这道题有点像资源管理,仔细一想,好像就是动态规划背包问题,只不过,这里背包大小变成了 0,1的多少,成了二维的,0,1都要满足条件.
这里没有表示选择物体的维度,使用了跟动态数组一样的方法,只不过便成了二维的
为了表示一个点的状态,使用二维数组dp(a,b)表示在a个0,b个1的情况下最多的字符串的个数,因为这里是01背包,对两个维度都是用逆序来计算,后面的就顺理成章

  • 注意 dp[j0][j1]=max(dp[j0][j1],dp[j0-need0][j1-need1]+1) 背包问题总是忘记加max!! 切记

代码

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(110,vector<int>(110,0));
        for(int i=0;i<strs.size();i++)
        {
            int need0=0,need1=0;//记录0,1个数
            for(int p=0;p<strs[i].length();p++)
            {
                if(strs[i][p]=='0') need0++;
                else need1++;
            }
            for(int j0=m;j0>=0;j0--)//倒叙遍历0
            {
                for(int j1=n;j1>=0;j1--)//倒序遍历1
                {
                    if(j0>=need0&&j1>=need1)
                    {
                        dp[j0][j1]=max(dp[j0][j1],dp[j0-need0][j1-need1]+1);//(*)转移方程
                    }
                }
            }
        }
        return dp[m][n];

    }
};

种下一棵树最好的时候是十年前,其次是现在.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值