原子或离子系统的哈密顿量是描述该系统中粒子的总能量的算符,包括动能、势能以及相互作用能量。在量子力学框架下,原子或离子系统的哈密顿量可以非常复杂,因为它们涉及电子与核之间的库仑相互作用、电子之间的相互作用、以及外加场的影响等。以下是原子和离子系统哈密顿量的详细描述。
1. 单电子原子/离子的哈密顿量
对于一个简单的单电子原子(如氢原子)或离子(如 He + \text{He}^+ He+),哈密顿量可以表示为:
H = − ℏ 2 2 m e ∇ 2 − Z e 2 4 π ϵ 0 r H = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{Ze^2}{4\pi \epsilon_0 r} H=−2meℏ2∇2−4πϵ0rZe2
其中:
- m e m_e me 是电子的质量。
- ∇ 2 \nabla^2 ∇2 是拉普拉斯算符,表示电子的动能部分。
- Z Z Z 是原子核的电荷数,对于氢原子 Z = 1 Z = 1 Z=1,对于 He + \text{He}^+ He+ Z = 2 Z = 2 Z=2。
- e e e 是电子的电荷。
- ϵ 0 \epsilon_0 ϵ0 是真空介电常数。
- r r r 是电子与原子核之间的距离。
解释:
- 动能部分:第一个项 − ℏ 2 2 m e ∇ 2 -\frac{\hbar^2}{2m_e} \nabla^2 −2meℏ2∇2 描述了电子的动能。
- 势能部分:第二项 − Z e 2 4 π ϵ 0 r -\frac{Ze^2}{4\pi \epsilon_0 r} −4πϵ0rZe2 描述了电子在原子核库仑势场中的势能。
这个哈密顿量可以用来解出原子系统的能级结构,特别是对于氢原子,解出的能级是著名的波尔能级。
2. 多电子原子/离子的哈密顿量
对于多电子原子(如氦原子)或多电子离子,哈密顿量复杂得多,因为除了电子与核之间的相互作用,还必须考虑电子之间的相互作用。
多电子原子/离子的哈密顿量通常写为:
H = ∑ i ( − ℏ 2 2 m e ∇ i 2 − Z e 2 4 π ϵ 0 r i ) + ∑ i < j e 2 4 π ϵ 0 r i j H = \sum_{i} \left( -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{Ze^2}{4\pi \epsilon_0 r_i} \right) + \sum_{i<j} \frac{e^2}{4\pi \epsilon_0 r_{ij}} H=i∑(−2meℏ2∇i2−4πϵ0riZe2)+i<j∑4πϵ0rije2
其中:
- 第一项 ∑ i ( − ℏ 2 2 m e ∇ i 2 ) \sum_{i} \left( -\frac{\hbar^2}{2m_e} \nabla_i^2 \right) ∑i(−2meℏ2∇i2) 是所有电子的动能。
- 第二项 ∑ i ( − Z e 2 4 π ϵ 0 r i ) \sum_{i} \left( -\frac{Ze^2}{4\pi \epsilon_0 r_i} \right) ∑i(−4πϵ0riZe2) 是每个电子与原子核之间的库仑相互作用。
- 第三项 ∑ i < j e 2 4 π ϵ 0 r i j \sum_{i<j} \frac{e^2}{4\pi \epsilon_0 r_{ij}} ∑i<j4πϵ0rije2 是电子之间的相互排斥能量,其中 r i j r_{ij} rij 是第 i i i 和第 j j j 个电子之间的距离。
解释:
- 动能部分:每个电子的动能贡献,描述了电子的运动。
- 电子-核相互作用:每个电子在原子核势场中的势能贡献。
- 电子-电子相互作用:由于电子之间的库仑排斥作用,需要额外考虑这一部分能量,这使得多电子系统的计算变得非常复杂。
在实际计算中,多电子系统的哈密顿量通常需要借助数值方法来求解,如密度泛函理论(DFT)或哈特里-福克近似。
3. 在外场中的原子/离子哈密顿量
如果一个原子或离子处于外加电场或磁场中,哈密顿量中还需要包括与外场的相互作用项。
3.1. 外加电场
假设外加电场为 E \mathbf{E} E,则哈密顿量中需要加入一个势能项 V ext V_{\text{ext}} Vext:
V ext = − ∑ i e E ⋅ r i V_{\text{ext}} = -\sum_{i} e \mathbf{E} \cdot \mathbf{r}_i Vext=−i∑eE⋅ri
因此,系统的总哈密顿量为:
H = ∑ i ( − ℏ 2 2 m e ∇ i 2 − Z e 2 4 π ϵ 0 r i − e E ⋅ r i ) + ∑ i < j e 2 4 π ϵ 0 r i j H = \sum_{i} \left( -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{Ze^2}{4\pi \epsilon_0 r_i} - e \mathbf{E} \cdot \mathbf{r}_i \right) + \sum_{i<j} \frac{e^2}{4\pi \epsilon_0 r_{ij}} H=i∑(−2meℏ2∇i2−4πϵ0riZe2−eE⋅ri)+i<j∑4πϵ0rije2
3.2. 外加磁场
如果外加磁场为 B \mathbf{B} B,电子在磁场中的哈密顿量可以通过引入矢量势 A \mathbf{A} A(满足 B = ∇ × A \mathbf{B} = \nabla \times \mathbf{A} B=∇×A)来描述,动量算符 p \mathbf{p} p 被替换为最小耦合形式:
p → p − e A \mathbf{p} \rightarrow \mathbf{p} - e\mathbf{A} p→p−eA
因此,哈密顿量为:
H = ∑ i [ 1 2 m e ( p i − e A ( r i ) ) 2 − Z e 2 4 π ϵ 0 r i ] + ∑ i < j e 2 4 π ϵ 0 r i j H = \sum_{i} \left[ \frac{1}{2m_e} \left( \mathbf{p}_i - e\mathbf{A}(\mathbf{r}_i) \right)^2 - \frac{Ze^2}{4\pi \epsilon_0 r_i} \right] + \sum_{i<j} \frac{e^2}{4\pi \epsilon_0 r_{ij}} H=i∑[2me1(pi−eA(ri))2−4πϵ0riZe2]+i<j∑4πϵ0rije2
4. 近似方法
由于原子或离子系统的哈密顿量通常非常复杂,特别是在多电子系统中,精确求解这些哈密顿量对应的薛定谔方程在实践中几乎不可能。因此,通常采用一些近似方法来处理,如:
- 哈特里-福克近似:考虑单电子波函数并忽略电子相关性。
- 密度泛函理论(DFT):基于电子密度而不是波函数的描述。
- 组态相互作用(CI):通过考虑多电子组态之间的相互作用来改进哈特里-福克方法。
5. 总结
原子或离子系统的哈密顿量包含动能、电子-核相互作用、电子-电子相互作用以及可能的外场相互作用。这些哈密顿量为理解和预测原子、分子结构及其行为提供了理论基础。由于多电子系统的复杂性,通常采用近似方法来进行计算和分析,以实现对现实系统的可行描述。