五一到了,ACM队组织大家去登山观光,队员们发现山上一个有N个景点,并且决定按照顺序来浏览这些景点,即每次所浏览景点的编号都要大于前一个浏览景点的编号。
同时队员们还有另一个登山习惯,就是不连续浏览海拔相同的两个景点,并且一旦开始下山,就不再向上走了。
队员们希望在满足上面条件的同时,尽可能多的浏览景点,你能帮他们找出最多可能浏览的景点数么?
输入格式
第一行包含整数N,表示景点数量。
第二行包含N个整数,表示每个景点的海拔。
输出格式
输出一个整数,表示最多能浏览的景点数。
数据范围
2≤N≤1000
输入样例:
8
186 186 150 200 160 130 197 220
输出样例:
4
这道题目的条件比较多
条件一:按照编号递增来浏览 相当于必须是一个子序列
条件二:相邻两个景点不能相同
条件三:一旦开始下降就不能上升了。
条件二与条件三 构成一个严格递增与严格下降的图。
那么我们以峰值作为突破点。集合划分,划分成n个集合,每个集合都是a[i]
(1 <= i <= n)。每个集合的意思是以a[i]为峰值。假设求第k个,就是峰值左边的最长上升子序列+有边的最长上升子序列-1.
为什么-1,因为峰值别加了两次。
#include<bits/stdc++.h>
using namespace std;
const int N=1100;
int dp[N],g[N],a[N];
int n;
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++)
{
dp[i]=1;
for(int j=1;j<i;j++)
if(a[i]>a[j]) dp[i]=max(dp[i],dp[j]+1);
}
for(int i=n;i>=1;i--)
{
g[i]=1;
for(int j=n;j>i;j--)
if(a[i]>a[j]) g[i]=max(g[i],g[j]+1);
}
int res=0;
for(int i=1;i<=n;i++) res=max(res,dp[i]+g[i]-1);
cout<<res<<endl;
}