给定N个闭区间[ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。
输出最小组数。
输入格式
第一行包含整数N,表示区间数。
接下来N行,每行包含两个整数ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示最小组数。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
解析:
1.将所有区间按照左端点从小到大排序
2.从前往后处理每个区间 判断当前能否将其放到某个分组中(L[i]>MAX_r)
- 如果不存在这样的分组,新开一个组,然后将其放进去
2)如果存在这样的分组,将其放进去,更新MAX_r
这里用小根堆维护每个分组的MAX_r
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+1000;
int n;
struct node
{
int l,r;
bool operator < (const node &W) const
{
return l<W.l;
}
}a[N];
int main()
{
cin>>n;
for(int i=0;i<n;i++) cin>>a[i].l>>a[i].r;
sort(a,a+n);
priority_queue<int,vector<int> ,greater<int> > heap;
int st=-2e9;
for(int i=0;i<n;i++)
{
auto t=a[i];
if(heap.size()==0||heap.top()>=t.l) heap.push(t.r); //新开分组
else
{
heap.pop();
heap.push(t.r); //更新MAX_r
}
}
cout<<heap.size()<<endl;
}