AcWing 198. 反素数--------------------------------------------数论()

对于任何正整数x,其约数的个数记作g(x),例如g(1)=1、g(6)=4。

如果某个正整数x满足:对于任意的小于x的正整数 i,都有g(x)>g(i) ,则称x为反素数。

例如,整数1,2,4,6等都是反素数。

现在给定一个数N,请求出不超过N的最大的反素数。

输入格式
一个正整数N。

输出格式
一个整数,表示不超过N的最大反素数。

数据范围
1≤N≤2∗109
输入样例:
1000
输出样例:
840

解析:
1 ~ N中最大的反质数,就是1 ~ N中约数个数最多的数中最小的一个
1~N中任何数的不同质因子都不会超过10个,因为2∗3∗5∗7∗11∗13∗17∗19∗23*29>2∗109

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int prime[9]={2,3,5,7,11,13,17,19,23}; 
int n;
int maxcnt,maxn;
void dfs(int u,int last,int p,int s)
{
	if(s>maxcnt||s==maxcnt&&p<maxn)
	{
		maxcnt=s;
		maxn=p;
	}
	if(u==9) return ;
	for(int i=1;i<=last;i++)
	{
		if((ll)p*prime[u]>n) break;
		p*=prime[u];
		dfs(u+1,i,p,s*(i+1));
	}
}
int main()
{
	scanf("%d",&n);
	dfs(0,30,1,1);//参数分别为:第几个质数/幂次/乘积/约数个数
	cout<<maxn<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值