对于任何正整数x,其约数的个数记作g(x),例如g(1)=1、g(6)=4。
如果某个正整数x满足:对于任意的小于x的正整数 i,都有g(x)>g(i) ,则称x为反素数。
例如,整数1,2,4,6等都是反素数。
现在给定一个数N,请求出不超过N的最大的反素数。
输入格式
一个正整数N。
输出格式
一个整数,表示不超过N的最大反素数。
数据范围
1≤N≤2∗109
输入样例:
1000
输出样例:
840
解析:
1 ~ N中最大的反质数,就是1 ~ N中约数个数最多的数中最小的一个
1~N中任何数的不同质因子都不会超过10个,因为2∗3∗5∗7∗11∗13∗17∗19∗23*29>2∗109
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int prime[9]={2,3,5,7,11,13,17,19,23};
int n;
int maxcnt,maxn;
void dfs(int u,int last,int p,int s)
{
if(s>maxcnt||s==maxcnt&&p<maxn)
{
maxcnt=s;
maxn=p;
}
if(u==9) return ;
for(int i=1;i<=last;i++)
{
if((ll)p*prime[u]>n) break;
p*=prime[u];
dfs(u+1,i,p,s*(i+1));
}
}
int main()
{
scanf("%d",&n);
dfs(0,30,1,1);//参数分别为:第几个质数/幂次/乘积/约数个数
cout<<maxn<<endl;
}