Master公式

使用条件

子规模的时间复杂度相同时,该定理适用

公式内容

T ( N ) = a T ( N b ) + O ( N d ) T(N) = aT(\frac{N}{b})+O(N^d) T(N)=aT(bN)+O(Nd)

( 1 ) l o g b a > d , O ( N l o g b a ) (1) \quad log_{b}^{a} > d, \quad O(N^{log_{b}^{a}}) (1)logba>d,O(Nlogba)

( 2 ) l o g b a < d , O ( N d ) (2) \quad log_{b}^{a} < d, \quad O(N^{d}) (2)logba<d,O(Nd)

( 3 ) l o g b a = d , O ( N d l o g N ) (3) \quad log_{b}^{a} = d, \quad O(N^{d}logN) (3)logba=d,O(NdlogN)

public class Demo {

    public int process(int[] arr, int left, int right) {
        if (left == right) {
            return arr[left];
        }
        int mid = left + ((right - left) >> 1);
        int leftMax = process(arr, left, mid);
        int rightMax = process(arr, mid + 1, right);
        return Math.max(leftMax, rightMax);
    }
}

分析

上述递归代码的子规模都是 N 2 \frac{N}{2} 2N故符合Master公式

  • a: process函数有两次调用子规模的语句, 故a=2
  • b: 子问题规模为 N 2 \frac{N}{2} 2N, 即
    • O( N b \frac{N}{b} bN) = O( N 2 \frac{N}{2} 2N), 即
      • b = 2
  • d: process函数中除了子规模的调用都是常数级别的操作, 即
    • O( N d N^d Nd) = O(1), 即
      • d = 0

此时 l o g b a \quad log_{b}^{a} logba= l o g 2 2 log_{2}^{2} log22=1,d=0,1>0

故上述递归代码时间复杂度为: O ( N ) O(N) O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值