回溯法之子集II

这篇博客介绍了如何在存在重复元素的整数数组中找到所有可能的子集,即幂集。通过排序数组并使用一个used数组记录元素使用状态,实现了递归回溯算法来避免重复。核心思想是在回溯过程中检查当前元素是否与前一个相同且未被使用,若相同则跳过,确保子集的唯一性。最后返回结果集。
摘要由CSDN通过智能技术生成

给定一个整数数组 nums ,其中可能包含重复元素,返回该数组所有可能的子集(幂集)。

该题与上一篇文章求子集最大的区别是 nums 中包含重复元素,所以需要进行去重,与组合问题II中的去重一样,需要进行的是树层去重而不是树枝去重,所以需要增加一个 used 数组记录元素的使用情况,在去重之前要对数组进行排序。

去重操作在组合问题II中,求子集问题在上篇文章中,该题实现代码如下:

//子集II--包括重复元素
vector<int> vec;
vector<vector<int>> result;

void backtracking(vector<int>& nums, int start, vector<bool>& used) {
	result.push_back(vec);
	//确定终止条件
	if(start >= nums.size()) {
		return;
	}
	//单层搜索的逻辑
	for(int i = 0; i<nums.size(); i++) {
		//判断是否和前面重复 
		if(i>start && nums[i] == nums[i-1] && used[i-1] == false) {
			continue;
		}
		vec.push_back(nums[i]);
		used[i] = true;
		backtracking(nums, i+1, used); //递归 
		vec.pop_back(); //回溯
		used[i] = false; 
	} 
}

vector<vector<int>> subsetsWithDup(vector<int>& nums) {
	vec.clear();
	result.clear();
	sort(nums.begin(), nums.end());
	vector<bool> used(nums.size(), false);
	backtracking(nums,0,used);
	return result;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值