轮廓匹配-Hu不变矩匹配实例代码

#include <iostream> #include <opencv2/opencv.hpp> #include <opencv2/core.hpp> #incl...

2019-01-17 19:33:33

阅读数 137

评论数 0

图片直方图应用-反向投影实例

/* 功能:读入图片,选择合适的ROI区域进行反向投影 (based on opencv4.0 api) 日期:2019-1-16 作者:william jiang */ #include <vector> #include &lt...

2019-01-16 19:23:31

阅读数 49

评论数 0

opencv4.0 WSL ubuntu 18.04安装

参考知乎文章 (INDEMIND带你玩转OpenCV 4.0) 步骤如下: 下载opencv source code到本地,解压; 安装opencv依赖项: sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec...

2018-12-31 11:41:46

阅读数 233

评论数 0

回溯法之子集树的算法框架

子集树可以认为是集合S分别对于每个元素进行选用操作而构成的二叉树,其叶节点为2^n个,其中n为集合S的元素个数。 根据上述思路,其基本的代码框架如下所示。经过Leetcode测试,该框架实用性较好,但是算法效率比其他相同的算法(指回溯法的其他写法)要慢。 # nums为上述集合S,res为...

2018-04-23 11:21:25

阅读数 485

评论数 0

python数独代码(DFS,包含剪枝操作)

class Solution: def solveSudoku(self, board): tmpList = self.todoList(board) self.dfs(tmpList, board, 0) def dfs(self, tmpLi...

2018-04-10 20:10:13

阅读数 188

评论数 0

利用CVXOPT模块实现SVM

1. CVXOPT模块安装 由于anaconda中并没有包含cvxopt模块,因此需要自行安装,步骤如下: - 首先,查看安装的numpy版本,我用的是1.13.3(命令为 np.__version__) - 然后,删除Numpy (命令为 pip uninstall numpy) - 接...

2018-03-25 22:20:28

阅读数 1156

评论数 0

机器学习-支持向量机的数学讨论

1 支持向量机的特点: 泛化错误率较低,计算开销不大,结果容易解释; 对于参数和核函数选择敏感 可以适用于标称型数据和数值型数据 2 SVM解释如下: 对于二分类问题,寻找其线性可分的可能性。如果能够实现分割,则称为分割超平面。具体的,对于N维数据,需要构建一个(N-1)维的超平面...

2018-03-18 14:24:57

阅读数 161

评论数 0

C++顺序列表的实现(采用模板类)

// 顺序列表的模板类实现 #include <iostream> using namespace std; template <class elemType> class seqList { private...

2018-03-17 19:43:47

阅读数 106

评论数 0

sklearn-svm对于红酒产地数据集进行分类

利用sklearn提供的svm方法对于红酒产地数据集进行分类,采用python3,包含了数据的下载、数据预处理和可视化以及数据分类。 可视化的情况如下图所示, 最终的分类准确率如下图所示, # python 3 import numpy as np from sklearn.m...

2018-03-03 14:08:39

阅读数 1486

评论数 0

一种焊盘的补偿结构分析

焊盘分析 对于高速电路而言,从发送端到接收端,存在着多种不连续性,其中从信号源芯片开始,会经过芯片焊盘,而接收端芯片也会存在芯片焊盘。进一步的,对于几乎所有的表贴元件,均存在焊盘造成信号路径不连续的问题。高速电路中,由于对于传输路径不连续性的要求,控制阻抗就能够较好地控制信号的反射和振荡。因此焊...

2018-02-27 20:17:34

阅读数 335

评论数 0

机器学习scikit-learn使用笔记

Scikit-learn安装 sklearn库依赖于numpy、scipy、matplotlib库,首先安装numpy,然后安装scipy、matplotlib库,最后安装scikit-learn库。可以通过anaconda进行安装或者通过依赖关系,逐个进行pip install进行安装。 ...

2018-02-25 22:11:02

阅读数 3630

评论数 2

机器学习 李宏毅 L38-Ensemble

Ensemble之bagging 对于较复杂的模型,其模型可能会造成较大的variance,因此可以通过多个模型进行平均或者投票,得到variance较小的总体模型,如下图所示。 一个容易overfit的模型是决策树,decision tree。而random forest是决策树进行...

2018-02-25 22:05:16

阅读数 158

评论数 0

机器学习 李宏毅 L36L37-RNN

RNN介绍 这里介绍slot fillng,可以使用Feedforward network。对于输入的词汇,可以采用1 of N编码或者其他方式,输入后,进行归类操作。但是,由于网络没有记忆力,所以对于前后语句有关联的问题,很难解决。需要采用recurrent neural network。每一...

2018-02-25 22:02:04

阅读数 377

评论数 0

机器学习 李宏毅 L35-Sequence Labeling Problem

本小节具体学习如何进行structure learning的问题解决。 样例讲解——POS tagging 主要任务是标记句子中每一个词的词性,属于NLP的基本任务,可以用于文法分析或者是单词的感知。 Useful for subsequent syntactic parsing ...

2018-02-25 21:59:02

阅读数 373

评论数 0

机器学习 李宏毅 L34-Structured Learning-SVM

Inference的求解 对于不同的问题,存在不同的方法去求解前一讲的最优化问题。如下图所示: Non-separable case 由于数据不可分,因此权重不能将数据进行分开,但是对于同一类训练数据,不同的权重矩阵仍然能够得到不同的输出,因此仍然有好坏之分。 接下来,定义一个c...

2018-02-04 21:42:15

阅读数 171

评论数 0

机器学习 李宏毅 L33-Structured Learning-Linear Model

Structured learning的解决方法概述 对于第32讲,第一个问题可以使用specific model进行具体化,如下图所示,将Fuction表示为特定的characteristics的组合。 对于需要的feature,可以使用CNN进行,对于输出结果(例如,object d...

2018-02-04 17:12:45

阅读数 64

评论数 0

机器学习 李宏毅 L32-Structured Learning-Introduction

Structured learning介绍 对于传统的机器学习,输出一般为数字型的数据类型,例如label或者是vector。而与实际情况更为接近的是,输出可以要求为一张image或者是一段文字等等。此时对应的学习称为structured learning。 应用场景包括语音辨识、翻译、语法分...

2018-02-04 14:12:07

阅读数 168

评论数 0

机器学习 李宏毅 L31-Support Vector Machine

Loss function的比较 这里,δ(g(xn)≠y^n)" role="presentation">δ(g(xn)≠y^n)δ(g(xn)≠y^n)\delta(g(x_n) \neq ...

2018-02-03 23:13:09

阅读数 104

评论数 0

机器学习 李宏毅 L30-Transfer Learning

Transfer Learning简介 Transfer Learning的用途包括语音辨识、图像识别和文本分析。 Transfer Learning中相关的数据称为source data,而实际的数据成为target data。Transfer learning的目标是通过学习sour...

2018-02-03 20:55:58

阅读数 138

评论数 0

机器学习 李宏毅 L28L29-Deep Generative Model

生成模型1: Pixel RNN 产生图像时,每次产生一个像素点。也就是,训练一个网络,输入为一个三维的vector,输出为另外一个三维的vector。可以使用Pixel RNN进行图像生成、语音生成等。 如果需要练习,可以提供该课程提供的792个Pokemon突袭那个,图像为20*20...

2018-02-02 22:54:05

阅读数 566

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭