7.4Rabin公钥加密算法

一、Rabin简介

1、Rabin算法既可以看成是RAS算法的一个特例,也可以看成对RSA算法的一个修正。
2、Rabin算法是一个被证明其破解难度正好等价于大整数分解的公钥密码算法,它是第一个可证明安全的公钥密码算法
3、Rabin算法的安全性基于求解合数模下的平方根的困难性

二、Rabin算法描述

1、密钥生成:密钥生成时,首先要选取两个不同的大素数p和q,并且p=q=3mod 4,然后计算模数n=pXq。将n作为公钥公开,(p,q)作为私钥,秘密保存。同样,我们看到想要由公钥n求得对应的私钥,就相当于分解n,只要n足够大,这便是困难的
2、加密变换:加密时与RSA一样,只不过这里的加密指数为2,对于一个明文消息m,计算c=m的平方 mod n就得到了密文c
当不知道私钥,也就是n的两个素因子p和q时,攻击者拿到密文c想要恢复明文m,就相当于求解c在模n下的平方根,这是困难的,而且其困难程度与分解n是等价的
3、解密变换:解密时,就是求密文c在模n下的平方根

4、Rabin算法的加密函数不是单射,解密具有不确定性,合法用户不能确切地知道到底哪一个解是真正的明文。
如果加密之前在明文消息中插入一些冗余信息,可以帮助收信者准确的识别解密后的明文。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Rabin加密算法是一种非对称加密算法,它是基于大数分解难题的加密算法,其加密过程与RSA算法类似,但解密过程却与RSA不同,需要通过求解模数的因子来实现解密。以下是Rabin加密算法的实现步骤: 1. 选择两个大质数p和q,并计算模数N=p*q。 2. 将明文转化为数字M,使得M小于模数N。 3. 将M的平方对模数N取余,得到C=M^2 mod N,即为密文。 4. 使用数学方法求解模数N的两个因子p和q,然后就可以得到明文M。 解密过程相对于RSA算法更加困难,因为需要通过大数分解来求解模数的两个因子p和q。这也是Rabin加密算法的缺点之一。 以下是一个简单的Python实现Rabin加密算法的代码: ``` import random # 生成大质数 def generate_prime(): while True: p = random.randint(100000, 999999) if is_prime(p): return p # 判断是否为质数 def is_prime(n): if n <= 1: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True # 计算最大公约数 def gcd(a, b): while b != 0: a, b = b, a % b return a # 求解模数的两个因子 def factorize(N): x = int(N ** 0.5) y = x r = 1 while r != 0: x = (x + y) % N y = (y ** 2 + r) % N r = (r + 1) % N d = gcd(abs(x - y), N) if d != 1 and d != N: return d, N // d # 加密函数 def encrypt(M): p = generate_prime() q = generate_prime() N = p * q C = (M ** 2) % N return C, N # 解密函数 def decrypt(C, N): p, q = factorize(N) mp = pow(C, (p + 1) // 4, p) mq = pow(C, (q + 1) // 4, q) yq, xp = gcd(p, q) x1 = (yq * p * mq + xp * q * mp) % N x2 = N - x1 return x1, x2 # 测试 M = 1234567890 C, N = encrypt(M) print("加密后的密文:", C) M1, M2 = decrypt(C, N) print("解密后的明文:", M1) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值