关于我装的GPU版tensorflow然后却是cpu在跑这件事

在尝试运行神经网络时,发现GPU未被利用,任务管理器显示GPU未使用。通过检查发现CUDA库文件问题,修改dll文件后,GPU在TensorFlow中可见,但运行代码时出现错误。解决方案是确保在实例化模型之前设置GPU内存增长,并将相关GPU配置语句放在代码开头。适当调整batch大小以提高GPU利用率。
摘要由CSDN通过智能技术生成

神经网络的层数越来越多,程序跑的也是越来越慢,打开任务管理器发现我的GPU根本没用到,白瞎我买的电脑,和费那劲装的tensorflowGPU版


首先看一下GPU是否可用

import tensorflow as tf
print(tf.config.list_physical_devices('GPU'))

我的输出是[],也就是空
在cmd窗口激活我们用的tensorflow环境,会显示找不到cusolver64_10.dll,我们进入cuda的目录,我的是默认的C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin,把cusolver64_11.dll改名改成10
到这里我就看到我的GPU了 [PhysicalDevice(name=’/physical_device:GPU:0’, device_type=‘GPU’)]


继续运行程序,我以前可以正常运行的代码开始报这个错

NotFoundError: No algorithm worked! [[node vgg_net/conv2d/Conv2D
(defined at :94) ]]
[Op:__inference_train_function_3048]

E

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值