tensorboard日志在linux服务器上,如何在本地可视化查看?&可视化命令&tensorboard使用教程

很好 passion!!!!

如何可视化linux上的tensorboard监控日志

本帖子解决的问题是:tensorboard的日志在linux服务器端,那我如何查看可视化这个监控日志呢?
本博客介绍的方法是使用xshell实现的:
选择你要连接的会话,然后

step1 查看这个会话的属性

类似下面这个界面:
在这里插入图片描述

step2 接着操作这个界面,选择隧道

在这里插入图片描述

操作③界面:

在这里插入图片描述
(上图中源主机即本地PC机,目标主机即远程服务器。本地端口设置成了16006,远程服务器端口还是设置默认的tensorboard端口6006)
  解释一下:默认的tensorboard端口是6006,通过访问http://localhost:6006便可查看可视化界面。但是现在我们直接在自己的本地电脑端浏览器输入: http://localhost:16006即可。

参考:【Pytorch】利用SSH查看远程服务器上的tensorboard可视化界面


可视化的tensorboard日志的命令

一般常用的可视化单个日志的命令

tensorboard --logdir="xxxx" 

⚠️:参数logdir不需要包含日志的名字,只需要写到日志所在的文件夹名字即可。

如何一下子可视化多个日志,并显示在同一张图中方便比较呢?

参考:tensorboard显示多个event文件在一个图上!tensorboard中曲线图的数据下载且用matplotlib.pyplot来画,便于实验对比。_tensorboard多个events放一起-CSDN博客

如果你的日志现在是这样存放的:
在这里插入图片描述
那你现在要一下子可视化这两个日志的话,只需要在此创建两个文件夹,然后将这两个日志分别剪切进去即可,
在这里插入图片描述
文件夹的名字随便取,但是这个名字是可视化的时候网页上显示的名字。


关于tensorboard的使用来记录所需的信息

参考:Pytorch(九) —— Tensorboard(当有了tensorboard日志文件怎么可视化它)(同时显示多个模型)(vscode的tensorboard)(TensorboardX)_tensorboard --logdir-CSDN博客

记录images

记录标量指标

如何记录下深度学习中的args

有这个需求是因为我有时候实验会有很多的参数设置,然而我不可能准确记下每一次的实验参数,所以我想让tensorboard可以记下我的args参数。

我的想法是通过表格来展示各种参数,因为我知道wandb是有这个方法的,但是我找了很久的帖子,发现tensorboard没有。因此,只能自定义一个方法,借助网页显示的markdown来用table可视化参数。

def show_args_as_table(args):
	args_dict = vars(args)
	# Method 3: Save as Table
	html_table = "<table>"
	html_table += "<tr><th>Parameter</th><th>Value</th></tr>"
	for key, value in args_dict.items():
    	html_table += f"<tr><td>{key}</td><td>{value}</td></tr>"
	html_table += "</table>"
	writer.add_text("CommandLineArgs/Table", html_table)

当然,我们可以在args设置一个参数为“describe” ,这个参数可以用来描述当前的方法的一些特征,中文或者英文都可以。

 argparser.add_argument('--describe', type=str, default="revision;cond guidance,  really old Encoder,old Decoder,add real skip connection, add batch=4, stop step100")

效果如下:
在这里插入图片描述


更新20241118 关于启动成功但是仍然打不开网页

  1. 今天突然tensorboard发疯,明明启动成功了,但是当我访问网址16006的时候,仍然显示不出来内容。不要慌,可以清理一下浏览器的缓存,然后再尝试一下,或许就可以了。
  2. 但也有可能是当前的端口被服务器上的其他人占用着,所以当他在使用的时候,你就没法使用了,不过最简单的办法就是咱们改一下端口号,比如不使用16006,换成16008.

更新20241226 关于使用的报错

今天我在看别人代码的时候,发现他在最后使用了下面的代码:

# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json") 

然后我想着我也要使用这个(但是其他我之前没见过这种使用方法),结果我试了之后报错如下:

‘SummaryWriter’ object has no attribute ‘export_scalars_to_json’

后来才知道,原来是因为我们使用的库不同:

# 别人导入的库 
from tensorboardX import SummaryWriter
......
......
    writer.export_scalars_to_json("./all_scalars.json")
    writer.close()

# 而我自己使用的库是
from torch.utils.tensorboard import SummaryWriter
#使用这个库是不能用上述的代码的

今天又涨知识了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值