skimage
文章平均质量分 65
原知
嗯
展开
-
skimage学习(3)——Gamma 和 log对比度调整、直方图均衡、为灰度图像着色
本示例通过对输入图像进行伽马和对数校正来调整图像对比度。此示例使用称为直方图均衡的方法增强了低对比度的图像,该方法 在图像1中“展开最频繁的强度值” 。均衡后的图像具有大致线性的累积分布函数。虽然直方图均衡具有不需要参数的优点,但有时会产生看起来不自然的图像。另一种方法是 对比度拉伸,其中图像被重新缩放以包括落在第 2 和第 98 个百分位数内的所有强度。......原创 2022-06-26 08:54:06 · 1462 阅读 · 1 评论 -
skimage学习(3)——使灰度滤镜适应 RGB 图像、免疫组化染色分离颜色、过滤区域最大值
有很多滤镜是用于灰度图像而不是彩色图像的。为了简化创建可以适应RGB图像的函数的过程,scikit-image提供了adapt_rgb装饰器。要实际使用adapt_rgb装饰器,您必须决定如何调整RGB图像,以便与灰度过滤器一起使用。有两个预定义的处理程序:each_channel:将每个RGB通道逐一传递给过滤器,然后将结果缝合回RGB图像中。hsv_value:将RGB图像转换为HSV,并将值通道传递给滤波器。过滤后的结果被插入到HSV图像中,并转换回RGB。颜色反褶积是指特征的颜色分离。本原创 2022-06-26 08:49:36 · 1206 阅读 · 0 评论 -
skimage学习(2)——RGB转灰度、RGB 转 HSV、直方图匹配
此示例将具有 RGB 通道的图像转换为具有单个灰度通道的图像。每个灰度像素的值计算为相应的红色、绿色和蓝色像素的加权和:CRT 荧光粉使用这些权重,因为它们比同等权重更能代表人类对红色、绿色和蓝色的感知。hsv详解:https://blog.csdn.net/bamboocan/article/details/70627137这个例子说明了如何RGB到HSV(色调,饱和度,亮度)转换可以用来促进分割过程。通常,图像中的物体有不同的颜色(色调)和亮度,所以这些特征可以用来分隔图像的不同区域。在RGB原创 2022-06-26 08:30:46 · 1999 阅读 · 0 评论 -
skimage学习(1)
这个例子展示了如何使用skimage中的函数。生成结构元素的形态学。每个图的标题表示函数的调用。这个例子演示了skimage.util()中的view_as_blocks的使用。当一个人想对非重叠图像块执行局部操作时,块视图是非常有用的。我们用skimage中的astronaut。数据,并将其“切分”为方方面面。然后,在每个块上,我们要么汇集该块的平均值,最大值或中值。结果显示在一起,连同一个三阶的样条插值的原始宇航员图像缩放。此脚本说明了如何使用基本的 NumPy 操作,例如切片、屏蔽和花式索引,以修原创 2022-06-18 12:34:50 · 963 阅读 · 0 评论