最长公共子序列问题
题目:两个字符串的最长公共子序列问题(样本做行,样本做列)
给定两个字符串str1和str2,
返回这两个字符串的最长公共子序列长度
比如 : str1 = “ab123c45d6ef”,str2 = “ks1234tz56”
最长公共子序列是“123456”,所以返回长度6
public static int longestCommonSubsequence1(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
return 0;
}
char[] str1 = s1.toCharArray();
char[] str2 = s2.toCharArray();
// 尝试
return process(str1, str2, str1.length - 1, str2.length - 1);
}
先将对应的字符串转换为我们的 char字节,这样不区分大小就可以确定是不是最长公共子序列了。
我们先写尝试第一步:
public static int process(char[] str1, char[] str2, int i, int j) {
// 当i等于0的时候
if (i == 0) {
if (str1[i] == str2[j]) {
return 1;
} else {
return process(str1, str2, i, j - 1);
}
}
public static int process(char[] str1, char[] str2, int i, int j) {
// 当j等于0的时候
if (j == 0) {
if (str1[i] == str2[j]) {
return 1;
} else {
return process(str1, str2, i - 1, j);
}
}
当然还有我们最常见的两者都等于0的时候
if (i == 0 && j == 0) {
return str1[i] == str2[j] ? 1 : 0;
}
除去这种情况,就是 i != 0的时候并且 j != 0 的时候
// i != 0 && j != 0 这个时候就让他们一个个的去递归找出每种情况,都取一个最大值,最后返回得到结果
int p1 = process(str1, str2, i - 1, j);
int p2 = process(str1, str2, i, j - 1);
int p3 = str1[i] == str2[j] ? (1 + process(str1, str2, i - 1, j - 1)) : 0;
return Math.max(p1, Math.max(p2, p3));
全部代码:
public static int longestCommonSubsequence1(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
return 0;
}
char[] str1 = s1.toCharArray();
char[] str2 = s2.toCharArray();
// 尝试
return process(str1, str2, str1.length - 1, str2.length - 1);
}
public static int process(char[] str1, char[] str2, int i, int j) {
if (i == 0 && j == 0) {
return str1[i] == str2[j] ? 1 : 0;
} else if (i == 0) {
if (str1[i] == str2[j]) {
return 1;
} else {
return process(str1, str2, i, j - 1);
}
} else if (j == 0) {
if (str1[i] == str2[j]) {
return 1;
} else {
return process(str1, str2, i - 1, j);
}
} else {
int p1 = process(str1, str2, i - 1, j);
int p2 = process(str1, str2, i, j - 1);
int p3 = str1[i] == str2[j] ? (1 + process(str1, str2, i - 1, j - 1)) : 0;
return Math.max(p1, Math.max(p2, p3));
}
}
dp动态规划版本
做一个N*M的一个矩阵,将所有情况都放在这个矩阵里面,依次拿好表中的值
public static int dp(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
return 0;
}
char[] str1 = s1.toCharArray();
char[] str2 = s2.toCharArray();
int N = str1.length;
int M = str2.length;
int[][] dp = new int[N][M];
// 先填好第一张0位置
dp[0][0] = str1[0] == str2[0] ? 1 : 0;
}
填好第一行,第一列的位置
for (int j = 1; j < M; j++) {
dp[0][j] = str1[0] == str2[j] ? 1 : dp[0][j - 1];
}
for (int i = 1; i < N; i++) {
dp[i][0] = str1[i] == str2[0] ? 1 : dp[i - 1][0];
}
将递归的代码复制下来改成dp表就行,最后返回 N-1,M-1位置就好
for (int i = 1; i < N; i++) {
for (int j = 1; j < M; j++) {
int p1 = dp[i - 1][j];
int p2 = dp[i][j - 1];
int p3 = str1[i] == str2[j] ? (1 + dp[i - 1][j - 1]) : 0;
dp[i][j] = Math.max(p1, Math.max(p2, p3));
}
}
return dp[N - 1][M - 1];
这里的s1 [0…i ]和 s2 [0…j ] 其实就是一个对应的样本模型,它往往就讨论当前结尾应该如何组织可能性,这是一个经验。像这道题改成dp的时候它无非就是有3中情况:
dp[i - 1][j];
dp[i][j - 1];
dp[i - 1][j - 1];
相当于就是左边,上面,和左上角的位置然后取一个最大值。在写递归的时候也是就这些情况,只不过dp就是换成二维数组,写出尝试的暴力递归出来,其实改成动态规划也是差不多的。
一个样本做行一个样本做列的对应模型,你就以它结尾来组织可能性,实际上有些情况下是必须含有i和必须含有j,必须含有必须不含有j的四种情况,有些时候是有可能含有也有可能不含有,就是完全不考虑i和可能考虑,完全不考虑j和可能考虑,还有都考虑就这些可能性,总而言之可能性是怎么组织的以结尾,你i结尾我j结尾,以这样的结尾的这个东西来组织,你算的过程可以依赖你之前的东西的,所以这就是为什么要以结尾位置来组织可能性,因为结尾是分清楚了,你剩下的可能性都是算过的