动态规划常见模型

本文详细介绍了动态规划的常见模型,包括递归(以斐波那契数列为例)、背包问题(01背包、完全背包、多重背包)、LCS(最长公共子序列问题)、LIS(最长上升子序列问题)和最大子段和(最大连续子序列和)。讨论了不同模型的状态定义、初始状态和状态转移方程,并给出了具体的示例和代码实现。
摘要由CSDN通过智能技术生成

动态规划(Dynamic Programming,简称 DP),是一种通过把复杂问题分解为相对简单的子问题来求解的方法。

对于动态规划问题的求解,大致分为三步:
1.确定状态
2.确定初始状态
3.确定状态转移方程

基础DP主要有以下五个常见模型:

1.递推、递归(以斐波那契数列为例)
2.背包问题(01背包、完全背包、多重背包)
3.LCS(最长公共子序列问题)
4.LIS(最长上升子序列问题)
5.最大子段和(最大连续子序列和)

1、递归、递推

简单的状态转移,找到规律并写出递推公式即可。

常见的问题有斐波那契数列、矩形覆盖等。

(1)斐波那契数列递归求法

int f(int n)
{
   
	if (n == 1 || n == 2)
		return 1;
	else
		return f(n - 1) + f(n - 2);
}
printf("%d\n", f(n));

对于递归的求法,时间复杂度为 O ( 2 n ) O(2^n) O(2n),效率比较低,当n比较大时,需要很长的时间才能返回结果,所以一般不用这种方法。

(2)斐波那契数列递推求法

f[0] = 0; f[1] = 1;
for (int i = 2; i <= n; i++)
	f[i] = f[i - 1] + f[i - 2];
printf("%d\n", f[n]);

递推求解的话,时间复杂度和空间复杂度均为 O ( n ) O(n) O(n)

斐波那契数列还有用矩阵来进行求解的时间复杂度为O(logn)的算法

详见:https://blog.csdn.net/weixin_43772166/article/details/103995932

(3)斐波那契数列滚动数组优化

对于上面的递推求法,空间复杂度为 O ( n ) O(n) O(n),当数据量n比较大的时候就会爆内存,所以要想办法来优化空间复杂度。

因为求数列的第n项时,只需要用到第n-1项和第n-2项,再求第n+1项时,用到的是第n项和第n-1项,第n-2项不会再用到,所以无需再存储它。

可以想到只用三个单位大小的数组来进行求解,当求第n项时,只存储第n-1项和第n-2项。每求解完一个数后,数组就向右移动。

这就是滚动数组的思想,可以将空间复杂度优化为 O ( 1 ) O(1) O(1)

f[1] = f[2] = 1;
for (int i = 3; i <= n; i++){
   
	f[0] = f[1];
	f[1] = f[2];
	f[2] = f[1] + f[0]; 
}
printf("%d\n", f[2]);

2、背包问题

(1)01背包

n n n个重量和价值分别为 w i w_i wi v i v_i vi的物品。从这些物品中挑选出总重量不超过 W W W的物品,求所有挑选方案中价值总和的最大值。

限制条件
1<= n n n<=100
1<= w i , v i w_i,v_i wi,vi<=100
1<= W W W<=10000

d p [ i + 1 ] [ j ] = dp[i+1][j]= dp[i+1][j]= 0 0 0—— i i i i + 1 i+1 i+1个物品(即从前 i + 1 i+1 i+1种物品)中选出总重量不超过 j j j的物品时总价值的最大值。

d p [ 0 ] [ j ] = 0 dp[0][j]=0 dp[0][j]=0

d p [ i + 1 ] [ j ] = { d p [ i ] [ j ] (j<w[i]) m a x ( d p [ i ] [ j ] , d p [ i ] [ j − w [ i ] ] + v [ i ] ) (其他) dp[i+1][j]= \begin{cases} dp[i][j]& \text{(j<w[i])}\\ max(dp[i][j],dp[i][j-w[i]]+v[i])& \text{(其他)} \end{cases} dp[i+1][j]={ dp[i][j]max(dp[i][j],dp[i][jw[i]]+v[i])(j<w[i])(其他)

因为动规是记录结果再利用,用上一层的所有状态来推出下一层的所有状态,所以时间复杂度比深搜要低很多。

动规的基本思路就是状态转移:写出边界的状态,再用边界的状态来转移到下一个状态。直到转移出最后所求的状态。

01背包求最大价值的核心代码:

memset(dp, 0xcf, sizeof dp);
dp[0][0] = 0;
for (int i = 0; i < n; i++)
	for (int j = 0; j <= W; j++)
	{
   
        if (j < w[i])
        	dp[i + 1][j] = dp[i][j];
        else
        	dp[i + 1][j] = max(dp[i][j], dp[i][j - w[i]] + v[i]);
	}
printf("%d\n", dp[n][W]);

有时候会遇到求能够装满背包的组合数的题目,将转移方程的max换成sum即可。

01背包求组合数的核心代码:

memset(dp, 0, sizeof dp);
dp[0][0] = 1;
for (int i = 0; i < n; i++)
	for (int j = 0; j <= W; j++)
	{
   
		if (j < w[i])
			dp[i + 1][j] = dp[i][j];
		else
			dp[i + 1][j] = dp[i][j] + dp[i][j - w[i]];
	}
printf("%d\n", dp[n][W]);

(2)完全背包

n n n种重量和价值分别为 w i w_i w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值