莫比乌斯反演基础

一、先补充几个常用和式规则

∑ m ∣ n a m = ∑ m ∣ n a n / m ∑ m ∣ n a m = ∑ k ∑ m > 0 a m [ n = m k ] ∑ m ∣ n ∑ k ∣ m a k , m = ∑ k ∣ n ∑ l ∣ ( n / k ) a k , k l \sum_{m | n} a_m = \sum_{m |n} a_{n / m} \\ \sum_{m | n} a_m = \sum_{k}\sum_{m > 0} a_m[n = mk] \\ \sum_{m | n}\sum_{k | m} a_{k, m} = \sum_{k | n}\sum_{l | (n / k)} a_{k, kl} mnam=mnan/mmnam=km>0am[n=mk]mnkmak,m=knl(n/k)ak,kl

二、积性函数的概念

​ 如果 a , b a,b a,b 互素, f ( a b ) f(ab) f(ab) = f ( a ) f(a) f(a) ∗ * f ( b ) f(b) f(b) ,就称 f f f 为积性函数

​ 如果 p p p 为素数,并且 f ( p n ) = f n ( p ) f(p^n) = f^n(p) f(pn)=fn(p) 则f为完全积性函数

三、莫比乌斯函数的概念

∑ d ∣ m μ ( d ) = [ m = 1 ] \sum_{d | m} \mu(d) = [m = 1] \\ dmμ(d)=[m=1]

​ 反演原理:
g ( m ) = ∑ d ∣ m f ( d ) ⇐ ⇒ f ( m ) = ∑ d ∣ m μ ( d ) g ( m d ) g ( n ) = ∑ n ∣ d f ( d ) ⇐ ⇒ f ( n ) = ∑ n ∣ d μ ( d n ) g ( d ) g(m)=\sum_{d | m}f(d) \Leftarrow\Rightarrow f(m) = \sum_{d | m} \mu(d)g(\frac{m}{d})\\ g(n)=\sum_{n | d}f(d) \Leftarrow\Rightarrow f(n) = \sum_{n | d} \mu({d \over n})g(d) g(m)=dmf(d)f(m)=dmμ(d)g(dm)g(n)=ndf(d)f(n)=ndμ(nd)g(d)
​ 证明如下:
如 果 g ( m ) = ∑ d ∣ m f ( d ) , 那 么 ∑ d ∣ m μ ( d ) g ( m d ) = ∑ d ∣ m μ ( m d ) g ( d ) = ∑ d ∣ m μ ( m d ) ∑ k ∣ d f ( k ) = ∑ k ∣ m ∑ d ∣ ( m / k ) μ ( m k d ) f ( k ) = ∑ k ∣ m ∑ d ∣ ( m / k ) μ ( d ) f ( k ) = ∑ k ∣ m [ m / k = 1 ] f ( k ) = f ( m ) 如果g(m) = \sum_{d | m} f(d),那么 \\ \sum_{d | m} \mu(d)g(\frac{m}{d}) = \sum_{d | m}\mu(\frac{m}{d})g(d) \\ =\sum_{d | m} \mu(\frac{m}{d}) \sum_{k | d}f(k) \\ =\sum_{k | m} \sum_{d | (m/k)} \mu(\frac{m}{kd})f(k) \\ =\sum_{k | m} \sum_{d | (m / k)}\mu(d)f(k)\\ =\sum_{k | m} [m / k = 1]f(k) = f(m) g(m)=dmf(d)dmμ(d)g(dm)=dmμ(dm)g(d)=dmμ(dm)kdf(k)=kmd(m/k)μ(kdm)f(k)=kmd(m/k)μ(d)f(k)=km[m/k=1]f(k)=f(m)

第二个式子的证明和第一个基本一致

同时莫比乌斯函数还有另外一个性质
g ( x ) = ∑ d ≥ 1 f ( x ≥ d ) ⇐ ⇒ f ( x ) = ∑ d ≥ 1 μ ( d ) g ( x / d ) g(x) = \sum_{d \geq 1}f(x \geq d) \Leftarrow\Rightarrow f(x) = \sum_{d \geq 1} \mu(d)g(x / d) g(x)=d1f(xd)f(x)=d1μ(d)g(x/d)
这个反演法则对所有满足 ∑ k , d ≥ 1 ∣ f ( x / k d ) ∣ < ∞ \sum_{k,d\geq1}|f(x/kd)| < \infin k,d1f(x/kd)<

证明如下:先假设 g ( x ) = ∑ d ≥ 1 f ( x / d ) g(x)=\sum_{d\geq1}f(x/d) g(x)=d1f(x/d) ,那么
∑ d ≥ 1 μ ( d ) g ( x / d ) = ∑ d ≥ 1 μ ( d ) ∑ k ≥ 1 f ( x / k d ) = ∑ m ≥ 1 f ( x / m ) ∑ d , k ≥ 1 μ ( d ) [ m = k d ] = ∑ m ≥ 1 f ( x / m ) ∑ d ∣ m μ ( d ) = ∑ m ≥ 1 f ( x / m ) [ m = 1 ] = f ( x ) \sum_{d \geq 1}\mu(d)g(x/d) = \sum_{d \geq 1}\mu(d)\sum_{k \geq 1}f(x/kd)\\ =\sum_{m \geq 1} f(x / m) \sum_{d,k \geq 1} \mu(d)[m=kd] \\ =\sum_{m \geq 1} f(x / m) \sum_{d | m} \mu(d) \\ =\sum_{m \geq 1} f(x / m)[m = 1]\\ =f(x) d1μ(d)g(x/d)=d1μ(d)k1f(x/kd)=m1f(x/m)d,k1μ(d)[m=kd]=m1f(x/m)dmμ(d)=m1f(x/m)[m=1]=f(x)

四、整除分块(数论分块)

对 于 ∑ i = 1 n ⌊ n / i ⌋ 对于\sum_{i = 1}^n \lfloor n/i \rfloor i=1nn/i

循环遍历求当然可以,但是如果 n n n 很大,并且配合其它的式子求解的话,时间复杂度就会非常高

首先我们想一下,对于每一个 i i i 都是 n / i n/i n/i的下取整,这个有什么性质呢

比如 n / i n / i n/i的下取整得到了一个 k k k,那么这个 i i i 一定小于等于 n / k n/k n/k, 这也就是说从 i i i n / k n/k n/k得到的答案一定都是 k k k

代码如下:

for(int i = 1; i <= n; ) {
    int r = n / (n / i);
    sum2 += (n / i) * (r - i + 1);
    i = r + 1;
}

五、例题

1. P 3455 [ P O I 2007 ] Z A P − Q u e r i e s P3455 [POI2007]ZAP-Queries P3455[POI2007]ZAPQueries

题目描述

密码学家正在尝试破解一种叫 B S A BSA BSA 的密码。

他发现,在破解一条消息的同时,他还需要回答这样一种问题:

给出 a , b , d a, b, d a,b,d,求满足 1 ≤ x ≤ a 1 \leq x \leq a 1xa 1 ≤ y ≤ b 1 \leq y \leq b 1yb g c d ( x , y ) = d gcd(x, y) = d gcd(x,y)=d 的二元组的数量。

因为要解决的问题实在太多了,他便过来寻求你的帮助。

输入格式

输入第一行一个整数 nn,代表要回答的问题个数。

接下来 n n n 行,每行三个整数 a , b , d a, b, d a,b,d

输出格式

对于每组询问,输出一个整数代表答案。

输入 #1
2
4 5 2
6 4 3
输出 #1
3
2
说明

对于全部的测试点,保证 1 ≤ n ≤ 5 ∗ 1 0 4 1 \leq n \leq 5 * 10^4 1n5104, 1 ≤ d ≤ a 1 \leq d \leq a 1da, b ≤ 5 ∗ 1 0 4 b \leq 5 * 10^4 b5104

解题思路:
∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = d ] = ∑ i = 1 n ∑ j = 1 m [ g c d ( i / d , j / d ) = = 1 ] = ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ g c d ( i , j ) = = 1 ] = ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ k ∣ g c d ( i , j ) μ ( k ) = ∑ k = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( d ) ∗ ⌊ n k d ⌋ ∗ ⌊ m k d ⌋ \sum_{i = 1} ^ n\sum_{j = 1} ^ m[gcd(i, j) == d] \\ =\sum_{i = 1}^n\sum_{j = 1}^m[gcd(i/d,j/d) == 1] \\ =\sum_{i = 1} ^{\lfloor {n \over d} \rfloor} \sum_{j = 1} ^{\lfloor {m \over d} \rfloor}[gcd(i, j) == 1] \\ = \sum_{i = 1} ^{\lfloor {n \over d} \rfloor} \sum_{j = 1} ^{\lfloor {m \over d} \rfloor} \sum_{k|gcd(i,j)} \mu(k) \\ =\sum_{k = 1} ^ {min(\lfloor{n \over d} \rfloor, \lfloor {m \over d} \rfloor)} \mu(d) * \lfloor{n \over kd} \rfloor * \lfloor{m \over kd} \rfloor i=1nj=1m[gcd(i,j)==d]=i=1nj=1m[gcd(i/d,j/d)==1]=i=1dnj=1dm[gcd(i,j)==1]=i=1dnj=1dmkgcd(i,j)μ(k)=k=1min(dn,dm)μ(d)kdnkdm
然后利用数论分块的知识就可以AC了

链接:https://www.luogu.com.cn/problem/P3455

AC代码

#include<cstdio>
#include<algorithm>

using namespace std;

const int N = 1e5 + 10;

bool vis[N];
int prime[N], mu[N], cnt, sum[N];

void getMu() {
	mu[1] = 1;
	for(int i = 2; i < N - 1; i++) {
		if(!vis[i]) {
			prime[cnt++] = i;
			mu[i] = -1;
		}
		for(int j = 0; j < cnt && i * prime[j] < N - 1; j++) {
			vis[i * prime[j]] = 1;
			mu[i * prime[j]] = -mu[i];
			if(i % prime[j] == 0) {
				mu[i * prime[j]] = 0;
				break;
			}
		}
	}
	for(int i = 1; i < N - 1; i++) {
		sum[i] = sum[i - 1] + mu[i];
	}
}

void solve(int a, int b, int d) {
	int ans = 0;
	a /= d; b/= d;
	int ed = min(a, b);
	for(int i = 1; i <= ed; ) {
		int r1 = a / (a / i);
		int r2 = b / (b / i);
		int r = min(r1, r2);
		ans += (sum[r] - sum[i - 1]) * (a / i) * (b / i);
		i = r + 1;
	}
	printf("%d\n", ans);
}

int main() {
	getMu();
	int t, a, b, d;
	scanf("%d", &t);
	while(t--) {
		scanf("%d%d%d", &a, &b, &d);
		solve(a, b, d);
	}
	return 0;
}

2. Y Y 的 G C D YY的GCD YYGCD

题目描述

神犇 Y Y YY YY 虐完数论后给某某出了一题

给定 N , M N,M N,M,求 1 ≤ x ≤ N , 1 ≤ y ≤ M 1 \leq x \leq N, 1 \leq y \leq M 1xN,1yM g c d ( x , y ) gcd(x,y) gcd(x,y) 为质数的 ( x , y ) (x, y) (x,y) 有多少对。

输入格式

第一行一个整数 T T T 表述数据组数。

接下来 T T T 行,每行两个正整数 N , M N, M N,M

输出格式

T T T 行,每行一个整数表示第 i i i 组数据的结果。

输入输出样例
输入#1
2
10 10
100 100
输出#1
30
2791
说明/提示

T = 1 0 4 T = 10^4 T=104, N , M ≤ 1 0 7 N,M \leq 10^7 N,M107

解题思路:
∑ p ∈ p r i m e ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = p ] = ∑ p ∈ p r i m e ∑ i = 1 n ∑ j = 1 m [ g c d ( i / p , j / p ) = = 1 ] = ∑ p ∈ p r i m e ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ [ g c d ( i , j ) = = 1 ] = ∑ p ∈ p r i m e ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ ∑ d ∣ g c d ( i , j ) μ ( d ) = ∑ p ∈ p r i m e ∑ d = 1 m i n ( ⌊ n p ⌋ , ⌊ m p ⌋ ) μ ( d ) ∗ ⌊ n p d ⌋ ∗ ⌊ m p d ⌋ \sum_{p \in prime}\sum_{i = 1}^n\sum_{j = 1}^m[gcd(i,j) == p]\\ =\sum_{p \in prime}\sum_{i = 1}^n\sum_{j = 1}^m[gcd(i/p, j/p) == 1]\\ =\sum_{p \in prime}\sum_{i = 1}^{\lfloor {n \over p} \rfloor} \sum_{j = 1}^{\lfloor {m \over p} \rfloor}[gcd(i, j) == 1]\\ =\sum_{p \in prime}\sum_{i = 1}^{\lfloor {n \over p} \rfloor} \sum_{j = 1}^{\lfloor {m \over p} \rfloor}\sum_{d|gcd(i,j)}\mu(d)\\ =\sum_{p \in prime}\sum_{d=1}^{min(\lfloor{n \over p} \rfloor, \lfloor {m \over p} \rfloor)}\mu(d)*{\lfloor {n \over pd} \rfloor}*{\lfloor {m \over pd} \rfloor} pprimei=1nj=1m[gcd(i,j)==p]=pprimei=1nj=1m[gcd(i/p,j/p)==1]=pprimei=1pnj=1pm[gcd(i,j)==1]=pprimei=1pnj=1pmdgcd(i,j)μ(d)=pprimed=1min(pn,pm)μ(d)pdnpdm
如果只是化到这里,就算用数论分块也是过不了,也会t掉

仔细看下就会发现,可以令 T = p d T = pd T=pd,原式就可以变为
∑ T = 1 m i n ( n , m ) ⌊ n T ⌋ ⌊ m T ⌋ ∑ p ∈ p r i m e ∣ T μ ( T p ) \sum_{T = 1}^{min(n,m)}{\lfloor {n \over T} \rfloor} {\lfloor {m \over T} \rfloor}\sum_{p\in prime | T}\mu({T \over p}) T=1min(n,m)TnTmpprimeTμ(pT)
可以看出来后面的那个和式是可以预处理的

链接:https://www.luogu.com.cn/problem/P3455

AC代码:

#include<cstdio>
#include<algorithm>

using namespace std;

const int N = 1e7 + 10;
const int maxx = 1e7 + 1;

bool vis[N];
int mu[N], prime[N], cnt, sum[N];

void getMu() {
	mu[1] = 1;
	for(int i = 2; i < maxx; i++) {
		if(!vis[i]) {
			prime[cnt++] = i;
			mu[i] = -1;
		}
		for(int j = 0; j < cnt && i * prime[j] < maxx; j++) {
			vis[i * prime[j]] = 1;
			mu[i * prime[j]] = -mu[i];
			if(i % prime[j] == 0) {
				mu[i * prime[j]] = 0;
				break;
			}
		} 
	}
	
	for(int i = 0; i < cnt; i++) {
		for(int j = 1; j * prime[i] < maxx; j++) {
			sum[prime[i] * j] += mu[j];
		}
	}
	
	for(int i = 1; i < maxx; i++) {
		sum[i] += sum[i - 1];
	}
	
}

void solve(int n, int m) {
	long long ans = 0;
	for(int i = 1; i <= min(n, m); ) {
		int r = min(n / (n / i), m / (m / i));
		ans += 	1ll * (sum[r] - sum[i - 1]) * (n / i) * (m / i);
		i = r + 1;
	} 
	printf("%lld\n", ans);
}

int main() {
	getMu();
	int n, m;
	int t;
	scanf("%d", &t);
	while(t--) {
		scanf("%d%d", &n, &m);
		solve(n, m);
	}
	return 0;
} 

3.最小公倍数之和

题目描述

对于 A 1 , A 2 , . . . , A N A_1, A_2, ..., A_N A1,A2,...,AN,求

∑ i = 1 N ∑ j = 1 N l c m ( A i , A j ) \sum_{i = 1}^N\sum_{j = 1}^Nlcm(A_i,A_j) i=1Nj=1Nlcm(Ai,Aj)的值。

l c m ( a , b ) lcm(a,b) lcm(a,b) 表示 a a a b b b 的最小公倍数

输入格式

第一行,一个整数 N N N

第二行, N N N 个整数 A 1 , A 2 , . . . , A N A_1, A_2, ..., A_N A1,A2,...,AN

输出格式

一个整数,表示所求的值。

输入输出样例
输入#1
2
2 3
输出#1
17
说明/提示

对于 30 % 30\% 30% 的数据, 1 ≤ N ≤ 1000 1 \leq N \leq 1000 1N1000; 1 ≤ A i ≤ 50000 1 \leq A_i \leq 50000 1Ai50000;

对于另外 30 % 30\% 30% 的数据, 1 ≤ N ≤ 50000 1 \leq N \leq 50000 1N50000; 1 ≤ A i ≤ 1000 1 \leq A_i \leq 1000 1Ai1000;

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 50000 1 \leq N \leq 50000 1N50000; 1 ≤ A i ≤ 50000 1 \leq A_i \leq 50000 1Ai50000

解题思路:
∑ i = 1 N ∑ j = 1 N l c m ( A i , A j ) = ∑ i = 1 N ∑ j = 1 N A i ∗ A j g c d ( A i , A j ) = ∑ k = 1 N ∑ i = 1 N ∑ j = 1 N A i ∗ A j k [ g c d ( A i , A j ) = = k ] \sum_{i = 1}^N\sum_{j = 1}^Nlcm(A_i,A_j)\\ =\sum_{i = 1}^N\sum_{j = 1}^N {A_i * A_j \over gcd(A_i,A_j)}\\ =\sum_{k = 1}^N\sum_{i = 1}^N\sum_{j = 1}^N {A_i * A_j \over k}[gcd(A_i,A_j) == k] i=1Nj=1Nlcm(Ai,Aj)=i=1Nj=1Ngcd(Ai,Aj)AiAj=k=1Ni=1Nj=1NkAiAj[gcd(Ai,Aj)==k]
写到这发现如果艾弗森表达式写成 [ g c d ( A i / k , A j / k ) = = 1 ] [gcd(A_i/k, A_j/k) == 1] [gcd(Ai/k,Aj/k)==1],前面的 i , j i,j i,j范围没办法缩,因为 A i ≠ i A_i \neq i Ai=i,

所以我们转化下思路,怎么让 i i i 表示 A i A_i Ai呢?如果我们记录 A i A_i Ai 的最大值 n n n,然后再用一个数组,比如说

C i C_i Ci来记录每一个 A i A_i Ai 出现的次数,然后就可以写成:
∑ i = 1 n ∑ j = 1 n l c m ( i , j ) ∗ c i ∗ c j = ∑ i = 1 n ∑ j = 1 n i ∗ j g c d ( i , j ) ∗ c i ∗ c j = ∑ k = 1 n ∑ i = 1 n ∑ j = 1 n i ∗ j k [ g c d ( i , j ) = = k ] ∗ c i ∗ c j = ∑ k = 1 n ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ n k ⌋ i ∗ j ∗ k [ g c d ( i , j ) = = 1 ] ∗ c i k ∗ c j k = ∑ k = 1 n ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ n k ⌋ i ∗ j ∗ k ∑ d ∣ g c d ( i , j ) μ ( d ) ∗ c i k ∗ c j k = ∑ k = 1 n ∑ d = 1 ⌊ n k ⌋ ∑ i = 1 ⌊ n k d ⌋ ∑ j = 1 ⌊ n k d ⌋ i ∗ j ∗ k ∗ d 2 ∗ c i k d ∗ c j k d ∗ μ ( d ) = ∑ T = 1 n ∑ i = 1 ⌊ n T ⌋ ∑ j = 1 ⌊ n T ⌋ i ∗ j ∗ T ∗ c i T ∗ c j T ∑ d ∣ T μ ( d ) ∗ d = ∑ T = 1 n T ∗ ( ∑ i = 1 ⌊ n T ⌋ i ∗ c i T ) 2 ∑ d ∣ T μ ( d ) ∗ d \sum_{i = 1}^n\sum_{j = 1}^nlcm(i,j) * c_i * c_j\\ =\sum_{i = 1}^n\sum_{j = 1}^n {i * j \over gcd(i,j)} * c_i * c_j\\ =\sum_{k = 1}^n\sum_{i = 1}^n\sum_{j = 1}^n{i * j \over k}[gcd(i,j) == k] * c_i * c_j\\ =\sum_{k = 1}^n\sum_{i = 1}^{\lfloor {n \over k} \rfloor}\sum_{j = 1}^{\lfloor {n \over k} \rfloor}i*j*k[gcd(i,j) == 1] * c_{ik} * c_{jk} \\ =\sum_{k = 1}^n\sum_{i = 1}^{\lfloor {n \over k} \rfloor}\sum_{j = 1}^{\lfloor {n \over k} \rfloor}i*j*k\sum_{d | gcd(i,j)}\mu(d) * c_{ik} * c_{jk} \\ =\sum_{k = 1}^n \sum_{d = 1}^{\lfloor {n \over k} \rfloor} \sum_{i = 1}^{\lfloor {n \over kd} \rfloor}\sum_{j = 1}^{\lfloor {n \over kd} \rfloor}i*j*k*d^2 *c_{ikd} * c_{jkd} * \mu(d) \\ =\sum_{T = 1}^n \sum_{i = 1}^{\lfloor {n \over T} \rfloor} \sum_{j = 1}^{\lfloor {n \over T} \rfloor}i*j*T*c_{iT}*c_{jT} \sum_{d|T}\mu(d)*d\\ =\sum_{T = 1}^n T *(\sum_{i = 1}^{\lfloor {n \over T} \rfloor} i * c_{iT})^2 \sum_{d|T}\mu(d)*d i=1nj=1nlcm(i,j)cicj=i=1nj=1ngcd(i,j)ijcicj=k=1ni=1nj=1nkij[gcd(i,j)==k]cicj=k=1ni=1knj=1knijk[gcd(i,j)==1]cikcjk=k=1ni=1knj=1knijkdgcd(i,j)μ(d)cikcjk=k=1nd=1kni=1kdnj=1kdnijkd2cikdcjkdμ(d)=T=1ni=1Tnj=1TnijTciTcjTdTμ(d)d=T=1nT(i=1TniciT)2dTμ(d)d
链接:https://www.luogu.com.cn/problem/P3911

AC代码:

#include<cstdio>
#include<algorithm>

using namespace std;

const int N = 1e5 + 10;
bool vis[N];
int prime[N], cnt, mu[N], sum[N], x, maxx = 0, s[N];

void getMu() {
	mu[1] = 1;
	for(int i = 2; i < N; i++) {
		if(!vis[i]) {
			prime[cnt++] = i;
			mu[i] = -1;
		}
		for(int j = 0; j < cnt && i * prime[j] < N; j++) {
			vis[i * prime[j]] = 1;
			mu[i * prime[j]] = -mu[i];
			if(i % prime[j] == 0) {
				mu[i * prime[j]] = 0;
				break;
			}
		}
	}
	
	for(int i = 1; i < N; i++) {
		for(int j = 1; j * i < N; j++) {
			sum[i * j] += mu[i] * i;
		}
	}
	
}

void solve() {
	long long ans = 0;
	for(int T = 1; T <= maxx; T++) {
		long long sumt = 0;
		for(int i = 1; i <= maxx / T; i++) {
			sumt += 1ll * i * s[i * T];
		}
		ans += 1ll * T * sumt * sumt * sum[T];
	}
	printf("%lld\n", ans);
}
.
int main() {
	getMu();
	int n;
	scanf("%d", &n);
	for(int i = 0; i < n; i++) {
		scanf("%d", &x);
		maxx = max(maxx, x);
		s[x]++;
	}
	solve();
	return 0;
}

4.能量采集

题目描述

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。

栋栋的植物种得非常整齐,一共有 n n n 列,每列有 m m m 棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标 ( x , y ) (x,y) (x,y) 来表示,其中 xx 的范围是 1 1 1 n n n y y y 的范围是 1 1 1 m m m ,表示是在第 x x x 列的第 y y y 棵。

由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是 ( 0 , 0 ) (0,0) (0,0)

能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有 k k k 棵植物,则能量的损失为 2 k + 1 2k+1 2k+1。例如,当能量汇集机器收集坐标为 ( 2 , 4 ) (2,4) (2,4) 的植物时,由于连接线段上存在一棵植物 ( 1 , 2 ) (1,2) (1,2) ,会产生 3 3 3 的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为 1 1 1 。现在要计算总的能量损失。

下面给出了一个能量采集的例子,其中 n = 5 n=5 n=5 m = 4 m = 4 m=4,一共有 20 20 20 棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。

img

在这个例子中,总共产生了 36 36 36 的能量损失。

输入格式

一行两个整数 n , m n,m n,m

输出格式

仅包含一个整数,表示总共产生的能量损失。

输入输出样例
输入#1
5 4
输出 #1
3 6
输入#2
3 4
输出#2
20
说明/提示

1 ≤ n , m ≤ 1 0 5 1 \leq n,m \leq 10^5 1n,m105

解题思路:

不难发现从 ( 0 , 0 ) (0,0) (0,0) ( x , y ) (x,y) (x,y) 的一条线上不算上这两个点一共有 g c d ( x , y ) − 1 gcd(x,y) - 1 gcd(x,y)1 个点

所以可以列个式子:
∑ i = 1 n ∑ j = 1 m ( 2 ∗ g c d ( i , j ) − 1 ) = 2 ∗ ( ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) )    −    n ∗ m \sum_{i = 1}^n \sum_{j = 1}^m(2 * gcd(i,j) - 1) \\ =2*(\sum_{i = 1}^n\sum_{j = 1}^mgcd(i,j)) \ \ - \ \ n*m i=1nj=1m(2gcd(i,j)1)=2(i=1nj=1mgcd(i,j))    nm
所以这题就相当于求解这个和式
∑ i = 1 n ∑ j = 1 m g c d ( i , j ) = ∑ k = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m k [ g c d ( i , j ) = = k ] = ∑ k = 1 m i n ( n , m ) ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ k [ g c d ( i , j ) = = 1 ] = ∑ k = 1 m i n ( n , m ) ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ k ∑ d ∣ g c d ( i , j ) μ ( d ) = ∑ k = 1 m i n ( n , m ) ∑ d = 1 m i n ( ⌊ n k ⌋ , ⌊ m k ⌋ ) k ∗ μ ( d ) ∗ ⌊ n k d ⌋ ∗ ⌊ m k d ⌋ = ∑ T = 1 m i n ( n , m ) ⌊ n T ⌋ ∗ ⌊ m T ⌋ ∗ ∑ k ∣ T μ ( T k ) ∗ k \sum_{i = 1}^n\sum_{j = 1}^mgcd(i,j) \\ =\sum_{k = 1}^{min(n,m)}\sum_{i = 1}^n\sum_{j = 1}^mk[gcd(i,j) == k]\\ =\sum_{k = 1}^{min(n,m)}\sum_{i = 1}^{\lfloor {n \over k} \rfloor} \sum_{j = 1}^{\lfloor {m \over k} \rfloor}k[gcd(i,j) == 1]\\ =\sum_{k = 1}^{min(n,m)}\sum_{i = 1}^{\lfloor {n \over k} \rfloor} \sum_{j = 1}^{\lfloor {m \over k} \rfloor}k \sum_{d|gcd(i,j)}\mu(d)\\ =\sum_{k = 1}^{min(n,m)}\sum_{d = 1}^{min({\lfloor {n \over k}\rfloor}, {\lfloor {m \over k}\rfloor})}k*\mu(d)*{\lfloor {n \over kd}\rfloor}*{\lfloor {m \over kd}\rfloor}\\ =\sum_{T = 1}^{min(n,m)} {\lfloor {n \over T}\rfloor}*{\lfloor {m \over T}\rfloor} *\sum_{k|T}\mu({T \over k})*k i=1nj=1mgcd(i,j)=k=1min(n,m)i=1nj=1mk[gcd(i,j)==k]=k=1min(n,m)i=1knj=1kmk[gcd(i,j)==1]=k=1min(n,m)i=1knj=1kmkdgcd(i,j)μ(d)=k=1min(n,m)d=1min(kn,km)kμ(d)kdnkdm=T=1min(n,m)TnTmkTμ(kT)k
链接:https://www.luogu.com.cn/problem/P1447

AC代码:

#include<cstdio>
#include<algorithm>

using namespace std;

const int N = 1e6 + 10;
bool vis[N];
int prime[N], cnt, mu[N], sum[N];

void getMu() {
	mu[1] = 1;
	for(int i = 2; i < N; i++) {
		if(!vis[i]) {
			prime[cnt++] = i;
			mu[i] = -1;
		}
		for(int j = 0; j < cnt && i * prime[j] < N; j++) {
			vis[i * prime[j]] = 1;
			mu[i * prime[j]] = -mu[i];
			if(i % prime[j] == 0) {
				mu[i * prime[j]] = 0;
				break;
			}
		}
	}
	
	for(int i = 1; i < N; i++) {
		for(int j = 1; j * i < N; j++) {
			sum[i * j] += mu[j] * i;
		}
	}
	
	for(int i = 1; i < N; i++) {
		sum[i] += sum[i - 1];
	}
}

void solve(int n, int m) {
	long long ans = 0;
	for(int i = 1; i <= min(n, m); ) {
		int r = min(n / (n / i), m / (m / i));
		ans += 1ll * (sum[r] - sum[i - 1]) * (n / i) * (m / i);
		i = r + 1;
	}
	printf("%lld\n", 2 * ans - 1ll * n * m);
}

int main() {
	getMu();
	int n, m;
	scanf("%d%d", &n, &m);
	solve(n, m);
	return 0;
} 

这样处理后面那个和式是可以过的,但是这题还可以再优化一下

首先 ∑ d ∣ m φ ( d ) = m ⇐ ⇒ φ ( m ) = ∑ d ∣ m μ ( d ) m d \sum_{d|m} \varphi(d)=m \Leftarrow \Rightarrow \varphi(m)=\sum_{d|m}\mu(d){m \over d} dmφ(d)=mφ(m)=dmμ(d)dm

然后发现后面那个要预处理的和式转换一下就等于 φ ( T ) \varphi(T) φ(T) ,所以只要在素数筛里求 φ ( T ) \varphi(T) φ(T)就可以

再补充一下欧拉函数的知识( p p p 代表素数)

如果 n = p 1 k 1 ∗ p 2 k 2 ∗ . . . ∗ p m k m n = p_1^{k_1}*p_2^{k_2}*...*p_m^{k_m} n=p1k1p2k2...pmkm ,那么 φ ( n ) = φ ( p 1 k 1 ) ∗ φ ( p 2 k 2 ) ∗ . . . ∗ φ ( p m k m ) \varphi(n) = \varphi(p_1^{k_1})*\varphi(p_2^{k_2})*...*\varphi(p_m^{k_m}) φ(n)=φ(p1k1)φ(p2k2)...φ(pmkm), 因为欧拉函数是积性函数

还有 φ ( p k ) = p k − p k − 1 \varphi(p^k) = p^k-p^{k-1} φ(pk)=pkpk1

所以
φ ( n ) = p 1 k 1 ∗ p 2 k 2 ∗ . . . ∗ p m k m ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ . . . ∗ ( 1 − 1 p m ) = n ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ . . . ∗ ( 1 − 1 p m ) \varphi(n) = p_1^{k_1} *p_2^{k_2}*...*p_m^{k_m}*(1-{1 \over p_1})*(1-{1 \over p_2}) *...*(1-{1 \over p_m})\\ =n*(1-{1 \over p_1})*(1-{1 \over p_2}) *...*(1-{1 \over p_m}) φ(n)=p1k1p2k2...pmkm(1p11)(1p21)...(1pm1)=n(1p11)(1p21)...(1pm1)
所以如果 p p p 是素数,并且 p p p x x x 的因子
φ ( p ∗ x ) = p ∗ x ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ . . . ∗ ( 1 − 1 p m ) = φ ( x ) ∗ p \varphi(p * x) = p *x*(1-{1 \over p_1})*(1-{1 \over p_2}) *...*(1-{1 \over p_m})=\varphi(x)*p φ(px)=px(1p11)(1p21)...(1pm1)=φ(x)p
如果 p p p 不是 x x x 的因子, 那么 p p p x x x 互素,则
φ ( p ∗ x ) = φ ( p ) ∗ φ ( x ) \varphi(p*x)=\varphi(p)*\varphi(x) φ(px)=φ(p)φ(x)
AC代码:

#include<cstdio>
#include<algorithm>

using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
bool vis[N];
int prime[N], cnt, mu[N];
ll sum[N], phi[N];

void getMu() {
	phi[1] = sum[1] = 1;
	for(int i = 2; i < N; i++) {
		if(!vis[i]) {
			prime[cnt++] = i;
			phi[i] = i - 1;
		}
		for(int j = 0; j < cnt && i * prime[j] < N; j++) {
			vis[i * prime[j]] = 1;
			if(i % prime[j] == 0) {
				phi[prime[j] * i] = phi[i] * prime[j];
				break;
			}
			phi[prime[j] * i] = phi[prime[j]] * phi[i];
		}
		sum[i] = sum[i - 1] + phi[i];
	}
}

void solve(int n, int m) {
	ll ans = 0;
	for(int i = 1; i <= min(n, m); ) {
		int r = min(n / (n / i), m / (m / i));
		ans += 1ll * (sum[r] - sum[i - 1]) * (n / i) * (m / i);
		i = r + 1;
	}
	printf("%lld\n", 2 * ans - 1ll * n * m);
}

int main() {
	getMu();
	int n, m;
	scanf("%d%d", &n, &m);
	solve(n, m);
	return 0;
} 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值