一、先补充几个常用和式规则
∑ m ∣ n a m = ∑ m ∣ n a n / m ∑ m ∣ n a m = ∑ k ∑ m > 0 a m [ n = m k ] ∑ m ∣ n ∑ k ∣ m a k , m = ∑ k ∣ n ∑ l ∣ ( n / k ) a k , k l \sum_{m | n} a_m = \sum_{m |n} a_{n / m} \\ \sum_{m | n} a_m = \sum_{k}\sum_{m > 0} a_m[n = mk] \\ \sum_{m | n}\sum_{k | m} a_{k, m} = \sum_{k | n}\sum_{l | (n / k)} a_{k, kl} m∣n∑am=m∣n∑an/mm∣n∑am=k∑m>0∑am[n=mk]m∣n∑k∣m∑ak,m=k∣n∑l∣(n/k)∑ak,kl
二、积性函数的概念
如果 a , b a,b a,b 互素, f ( a b ) f(ab) f(ab) = f ( a ) f(a) f(a) ∗ * ∗ f ( b ) f(b) f(b) ,就称 f f f 为积性函数
如果 p p p 为素数,并且 f ( p n ) = f n ( p ) f(p^n) = f^n(p) f(pn)=fn(p) 则f为完全积性函数
三、莫比乌斯函数的概念
∑ d ∣ m μ ( d ) = [ m = 1 ] \sum_{d | m} \mu(d) = [m = 1] \\ d∣m∑μ(d)=[m=1]
反演原理:
g
(
m
)
=
∑
d
∣
m
f
(
d
)
⇐
⇒
f
(
m
)
=
∑
d
∣
m
μ
(
d
)
g
(
m
d
)
g
(
n
)
=
∑
n
∣
d
f
(
d
)
⇐
⇒
f
(
n
)
=
∑
n
∣
d
μ
(
d
n
)
g
(
d
)
g(m)=\sum_{d | m}f(d) \Leftarrow\Rightarrow f(m) = \sum_{d | m} \mu(d)g(\frac{m}{d})\\ g(n)=\sum_{n | d}f(d) \Leftarrow\Rightarrow f(n) = \sum_{n | d} \mu({d \over n})g(d)
g(m)=d∣m∑f(d)⇐⇒f(m)=d∣m∑μ(d)g(dm)g(n)=n∣d∑f(d)⇐⇒f(n)=n∣d∑μ(nd)g(d)
证明如下:
如
果
g
(
m
)
=
∑
d
∣
m
f
(
d
)
,
那
么
∑
d
∣
m
μ
(
d
)
g
(
m
d
)
=
∑
d
∣
m
μ
(
m
d
)
g
(
d
)
=
∑
d
∣
m
μ
(
m
d
)
∑
k
∣
d
f
(
k
)
=
∑
k
∣
m
∑
d
∣
(
m
/
k
)
μ
(
m
k
d
)
f
(
k
)
=
∑
k
∣
m
∑
d
∣
(
m
/
k
)
μ
(
d
)
f
(
k
)
=
∑
k
∣
m
[
m
/
k
=
1
]
f
(
k
)
=
f
(
m
)
如果g(m) = \sum_{d | m} f(d),那么 \\ \sum_{d | m} \mu(d)g(\frac{m}{d}) = \sum_{d | m}\mu(\frac{m}{d})g(d) \\ =\sum_{d | m} \mu(\frac{m}{d}) \sum_{k | d}f(k) \\ =\sum_{k | m} \sum_{d | (m/k)} \mu(\frac{m}{kd})f(k) \\ =\sum_{k | m} \sum_{d | (m / k)}\mu(d)f(k)\\ =\sum_{k | m} [m / k = 1]f(k) = f(m)
如果g(m)=d∣m∑f(d),那么d∣m∑μ(d)g(dm)=d∣m∑μ(dm)g(d)=d∣m∑μ(dm)k∣d∑f(k)=k∣m∑d∣(m/k)∑μ(kdm)f(k)=k∣m∑d∣(m/k)∑μ(d)f(k)=k∣m∑[m/k=1]f(k)=f(m)
第二个式子的证明和第一个基本一致
同时莫比乌斯函数还有另外一个性质
g
(
x
)
=
∑
d
≥
1
f
(
x
≥
d
)
⇐
⇒
f
(
x
)
=
∑
d
≥
1
μ
(
d
)
g
(
x
/
d
)
g(x) = \sum_{d \geq 1}f(x \geq d) \Leftarrow\Rightarrow f(x) = \sum_{d \geq 1} \mu(d)g(x / d)
g(x)=d≥1∑f(x≥d)⇐⇒f(x)=d≥1∑μ(d)g(x/d)
这个反演法则对所有满足
∑
k
,
d
≥
1
∣
f
(
x
/
k
d
)
∣
<
∞
\sum_{k,d\geq1}|f(x/kd)| < \infin
∑k,d≥1∣f(x/kd)∣<∞
证明如下:先假设
g
(
x
)
=
∑
d
≥
1
f
(
x
/
d
)
g(x)=\sum_{d\geq1}f(x/d)
g(x)=∑d≥1f(x/d) ,那么
∑
d
≥
1
μ
(
d
)
g
(
x
/
d
)
=
∑
d
≥
1
μ
(
d
)
∑
k
≥
1
f
(
x
/
k
d
)
=
∑
m
≥
1
f
(
x
/
m
)
∑
d
,
k
≥
1
μ
(
d
)
[
m
=
k
d
]
=
∑
m
≥
1
f
(
x
/
m
)
∑
d
∣
m
μ
(
d
)
=
∑
m
≥
1
f
(
x
/
m
)
[
m
=
1
]
=
f
(
x
)
\sum_{d \geq 1}\mu(d)g(x/d) = \sum_{d \geq 1}\mu(d)\sum_{k \geq 1}f(x/kd)\\ =\sum_{m \geq 1} f(x / m) \sum_{d,k \geq 1} \mu(d)[m=kd] \\ =\sum_{m \geq 1} f(x / m) \sum_{d | m} \mu(d) \\ =\sum_{m \geq 1} f(x / m)[m = 1]\\ =f(x)
d≥1∑μ(d)g(x/d)=d≥1∑μ(d)k≥1∑f(x/kd)=m≥1∑f(x/m)d,k≥1∑μ(d)[m=kd]=m≥1∑f(x/m)d∣m∑μ(d)=m≥1∑f(x/m)[m=1]=f(x)
四、整除分块(数论分块)
对 于 ∑ i = 1 n ⌊ n / i ⌋ 对于\sum_{i = 1}^n \lfloor n/i \rfloor 对于i=1∑n⌊n/i⌋
循环遍历求当然可以,但是如果 n n n 很大,并且配合其它的式子求解的话,时间复杂度就会非常高
首先我们想一下,对于每一个 i i i 都是 n / i n/i n/i的下取整,这个有什么性质呢
比如 n / i n / i n/i的下取整得到了一个 k k k,那么这个 i i i 一定小于等于 n / k n/k n/k, 这也就是说从 i i i 到 n / k n/k n/k得到的答案一定都是 k k k
代码如下:
for(int i = 1; i <= n; ) {
int r = n / (n / i);
sum2 += (n / i) * (r - i + 1);
i = r + 1;
}
五、例题
1. P 3455 [ P O I 2007 ] Z A P − Q u e r i e s P3455 [POI2007]ZAP-Queries P3455[POI2007]ZAP−Queries
题目描述
密码学家正在尝试破解一种叫 B S A BSA BSA 的密码。
他发现,在破解一条消息的同时,他还需要回答这样一种问题:
给出 a , b , d a, b, d a,b,d,求满足 1 ≤ x ≤ a 1 \leq x \leq a 1≤x≤a, 1 ≤ y ≤ b 1 \leq y \leq b 1≤y≤b且 g c d ( x , y ) = d gcd(x, y) = d gcd(x,y)=d 的二元组的数量。
因为要解决的问题实在太多了,他便过来寻求你的帮助。
输入格式
输入第一行一个整数 nn,代表要回答的问题个数。
接下来 n n n 行,每行三个整数 a , b , d a, b, d a,b,d。
输出格式
对于每组询问,输出一个整数代表答案。
输入 #1
2
4 5 2
6 4 3
输出 #1
3
2
说明
对于全部的测试点,保证 1 ≤ n ≤ 5 ∗ 1 0 4 1 \leq n \leq 5 * 10^4 1≤n≤5∗104, 1 ≤ d ≤ a 1 \leq d \leq a 1≤d≤a, b ≤ 5 ∗ 1 0 4 b \leq 5 * 10^4 b≤5∗104。
解题思路:
∑
i
=
1
n
∑
j
=
1
m
[
g
c
d
(
i
,
j
)
=
=
d
]
=
∑
i
=
1
n
∑
j
=
1
m
[
g
c
d
(
i
/
d
,
j
/
d
)
=
=
1
]
=
∑
i
=
1
⌊
n
d
⌋
∑
j
=
1
⌊
m
d
⌋
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
i
=
1
⌊
n
d
⌋
∑
j
=
1
⌊
m
d
⌋
∑
k
∣
g
c
d
(
i
,
j
)
μ
(
k
)
=
∑
k
=
1
m
i
n
(
⌊
n
d
⌋
,
⌊
m
d
⌋
)
μ
(
d
)
∗
⌊
n
k
d
⌋
∗
⌊
m
k
d
⌋
\sum_{i = 1} ^ n\sum_{j = 1} ^ m[gcd(i, j) == d] \\ =\sum_{i = 1}^n\sum_{j = 1}^m[gcd(i/d,j/d) == 1] \\ =\sum_{i = 1} ^{\lfloor {n \over d} \rfloor} \sum_{j = 1} ^{\lfloor {m \over d} \rfloor}[gcd(i, j) == 1] \\ = \sum_{i = 1} ^{\lfloor {n \over d} \rfloor} \sum_{j = 1} ^{\lfloor {m \over d} \rfloor} \sum_{k|gcd(i,j)} \mu(k) \\ =\sum_{k = 1} ^ {min(\lfloor{n \over d} \rfloor, \lfloor {m \over d} \rfloor)} \mu(d) * \lfloor{n \over kd} \rfloor * \lfloor{m \over kd} \rfloor
i=1∑nj=1∑m[gcd(i,j)==d]=i=1∑nj=1∑m[gcd(i/d,j/d)==1]=i=1∑⌊dn⌋j=1∑⌊dm⌋[gcd(i,j)==1]=i=1∑⌊dn⌋j=1∑⌊dm⌋k∣gcd(i,j)∑μ(k)=k=1∑min(⌊dn⌋,⌊dm⌋)μ(d)∗⌊kdn⌋∗⌊kdm⌋
然后利用数论分块的知识就可以AC了
链接:https://www.luogu.com.cn/problem/P3455
AC代码
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1e5 + 10;
bool vis[N];
int prime[N], mu[N], cnt, sum[N];
void getMu() {
mu[1] = 1;
for(int i = 2; i < N - 1; i++) {
if(!vis[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && i * prime[j] < N - 1; j++) {
vis[i * prime[j]] = 1;
mu[i * prime[j]] = -mu[i];
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
}
}
for(int i = 1; i < N - 1; i++) {
sum[i] = sum[i - 1] + mu[i];
}
}
void solve(int a, int b, int d) {
int ans = 0;
a /= d; b/= d;
int ed = min(a, b);
for(int i = 1; i <= ed; ) {
int r1 = a / (a / i);
int r2 = b / (b / i);
int r = min(r1, r2);
ans += (sum[r] - sum[i - 1]) * (a / i) * (b / i);
i = r + 1;
}
printf("%d\n", ans);
}
int main() {
getMu();
int t, a, b, d;
scanf("%d", &t);
while(t--) {
scanf("%d%d%d", &a, &b, &d);
solve(a, b, d);
}
return 0;
}
2. Y Y 的 G C D YY的GCD YY的GCD
题目描述
神犇 Y Y YY YY 虐完数论后给某某出了一题
给定 N , M N,M N,M,求 1 ≤ x ≤ N , 1 ≤ y ≤ M 1 \leq x \leq N, 1 \leq y \leq M 1≤x≤N,1≤y≤M 且 g c d ( x , y ) gcd(x,y) gcd(x,y) 为质数的 ( x , y ) (x, y) (x,y) 有多少对。
输入格式
第一行一个整数 T T T 表述数据组数。
接下来 T T T 行,每行两个正整数 N , M N, M N,M。
输出格式
T T T 行,每行一个整数表示第 i i i 组数据的结果。
输入输出样例
输入#1
2
10 10
100 100
输出#1
30
2791
说明/提示
T = 1 0 4 T = 10^4 T=104, N , M ≤ 1 0 7 N,M \leq 10^7 N,M≤107
解题思路:
∑
p
∈
p
r
i
m
e
∑
i
=
1
n
∑
j
=
1
m
[
g
c
d
(
i
,
j
)
=
=
p
]
=
∑
p
∈
p
r
i
m
e
∑
i
=
1
n
∑
j
=
1
m
[
g
c
d
(
i
/
p
,
j
/
p
)
=
=
1
]
=
∑
p
∈
p
r
i
m
e
∑
i
=
1
⌊
n
p
⌋
∑
j
=
1
⌊
m
p
⌋
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
p
∈
p
r
i
m
e
∑
i
=
1
⌊
n
p
⌋
∑
j
=
1
⌊
m
p
⌋
∑
d
∣
g
c
d
(
i
,
j
)
μ
(
d
)
=
∑
p
∈
p
r
i
m
e
∑
d
=
1
m
i
n
(
⌊
n
p
⌋
,
⌊
m
p
⌋
)
μ
(
d
)
∗
⌊
n
p
d
⌋
∗
⌊
m
p
d
⌋
\sum_{p \in prime}\sum_{i = 1}^n\sum_{j = 1}^m[gcd(i,j) == p]\\ =\sum_{p \in prime}\sum_{i = 1}^n\sum_{j = 1}^m[gcd(i/p, j/p) == 1]\\ =\sum_{p \in prime}\sum_{i = 1}^{\lfloor {n \over p} \rfloor} \sum_{j = 1}^{\lfloor {m \over p} \rfloor}[gcd(i, j) == 1]\\ =\sum_{p \in prime}\sum_{i = 1}^{\lfloor {n \over p} \rfloor} \sum_{j = 1}^{\lfloor {m \over p} \rfloor}\sum_{d|gcd(i,j)}\mu(d)\\ =\sum_{p \in prime}\sum_{d=1}^{min(\lfloor{n \over p} \rfloor, \lfloor {m \over p} \rfloor)}\mu(d)*{\lfloor {n \over pd} \rfloor}*{\lfloor {m \over pd} \rfloor}
p∈prime∑i=1∑nj=1∑m[gcd(i,j)==p]=p∈prime∑i=1∑nj=1∑m[gcd(i/p,j/p)==1]=p∈prime∑i=1∑⌊pn⌋j=1∑⌊pm⌋[gcd(i,j)==1]=p∈prime∑i=1∑⌊pn⌋j=1∑⌊pm⌋d∣gcd(i,j)∑μ(d)=p∈prime∑d=1∑min(⌊pn⌋,⌊pm⌋)μ(d)∗⌊pdn⌋∗⌊pdm⌋
如果只是化到这里,就算用数论分块也是过不了,也会t掉
仔细看下就会发现,可以令
T
=
p
d
T = pd
T=pd,原式就可以变为
∑
T
=
1
m
i
n
(
n
,
m
)
⌊
n
T
⌋
⌊
m
T
⌋
∑
p
∈
p
r
i
m
e
∣
T
μ
(
T
p
)
\sum_{T = 1}^{min(n,m)}{\lfloor {n \over T} \rfloor} {\lfloor {m \over T} \rfloor}\sum_{p\in prime | T}\mu({T \over p})
T=1∑min(n,m)⌊Tn⌋⌊Tm⌋p∈prime∣T∑μ(pT)
可以看出来后面的那个和式是可以预处理的
链接:https://www.luogu.com.cn/problem/P3455
AC代码:
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1e7 + 10;
const int maxx = 1e7 + 1;
bool vis[N];
int mu[N], prime[N], cnt, sum[N];
void getMu() {
mu[1] = 1;
for(int i = 2; i < maxx; i++) {
if(!vis[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && i * prime[j] < maxx; j++) {
vis[i * prime[j]] = 1;
mu[i * prime[j]] = -mu[i];
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
}
}
for(int i = 0; i < cnt; i++) {
for(int j = 1; j * prime[i] < maxx; j++) {
sum[prime[i] * j] += mu[j];
}
}
for(int i = 1; i < maxx; i++) {
sum[i] += sum[i - 1];
}
}
void solve(int n, int m) {
long long ans = 0;
for(int i = 1; i <= min(n, m); ) {
int r = min(n / (n / i), m / (m / i));
ans += 1ll * (sum[r] - sum[i - 1]) * (n / i) * (m / i);
i = r + 1;
}
printf("%lld\n", ans);
}
int main() {
getMu();
int n, m;
int t;
scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
solve(n, m);
}
return 0;
}
3.最小公倍数之和
题目描述
对于 A 1 , A 2 , . . . , A N A_1, A_2, ..., A_N A1,A2,...,AN,求
∑ i = 1 N ∑ j = 1 N l c m ( A i , A j ) \sum_{i = 1}^N\sum_{j = 1}^Nlcm(A_i,A_j) ∑i=1N∑j=1Nlcm(Ai,Aj)的值。
l c m ( a , b ) lcm(a,b) lcm(a,b) 表示 a a a 和 b b b 的最小公倍数
输入格式
第一行,一个整数 N N N。
第二行, N N N 个整数 A 1 , A 2 , . . . , A N A_1, A_2, ..., A_N A1,A2,...,AN。
输出格式
一个整数,表示所求的值。
输入输出样例
输入#1
2
2 3
输出#1
17
说明/提示
对于 30 % 30\% 30% 的数据, 1 ≤ N ≤ 1000 1 \leq N \leq 1000 1≤N≤1000; 1 ≤ A i ≤ 50000 1 \leq A_i \leq 50000 1≤Ai≤50000;
对于另外 30 % 30\% 30% 的数据, 1 ≤ N ≤ 50000 1 \leq N \leq 50000 1≤N≤50000; 1 ≤ A i ≤ 1000 1 \leq A_i \leq 1000 1≤Ai≤1000;
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 50000 1 \leq N \leq 50000 1≤N≤50000; 1 ≤ A i ≤ 50000 1 \leq A_i \leq 50000 1≤Ai≤50000。
解题思路:
∑
i
=
1
N
∑
j
=
1
N
l
c
m
(
A
i
,
A
j
)
=
∑
i
=
1
N
∑
j
=
1
N
A
i
∗
A
j
g
c
d
(
A
i
,
A
j
)
=
∑
k
=
1
N
∑
i
=
1
N
∑
j
=
1
N
A
i
∗
A
j
k
[
g
c
d
(
A
i
,
A
j
)
=
=
k
]
\sum_{i = 1}^N\sum_{j = 1}^Nlcm(A_i,A_j)\\ =\sum_{i = 1}^N\sum_{j = 1}^N {A_i * A_j \over gcd(A_i,A_j)}\\ =\sum_{k = 1}^N\sum_{i = 1}^N\sum_{j = 1}^N {A_i * A_j \over k}[gcd(A_i,A_j) == k]
i=1∑Nj=1∑Nlcm(Ai,Aj)=i=1∑Nj=1∑Ngcd(Ai,Aj)Ai∗Aj=k=1∑Ni=1∑Nj=1∑NkAi∗Aj[gcd(Ai,Aj)==k]
写到这发现如果艾弗森表达式写成
[
g
c
d
(
A
i
/
k
,
A
j
/
k
)
=
=
1
]
[gcd(A_i/k, A_j/k) == 1]
[gcd(Ai/k,Aj/k)==1],前面的
i
,
j
i,j
i,j范围没办法缩,因为
A
i
≠
i
A_i \neq i
Ai=i,
所以我们转化下思路,怎么让 i i i 表示 A i A_i Ai呢?如果我们记录 A i A_i Ai 的最大值 n n n,然后再用一个数组,比如说
C
i
C_i
Ci来记录每一个
A
i
A_i
Ai 出现的次数,然后就可以写成:
∑
i
=
1
n
∑
j
=
1
n
l
c
m
(
i
,
j
)
∗
c
i
∗
c
j
=
∑
i
=
1
n
∑
j
=
1
n
i
∗
j
g
c
d
(
i
,
j
)
∗
c
i
∗
c
j
=
∑
k
=
1
n
∑
i
=
1
n
∑
j
=
1
n
i
∗
j
k
[
g
c
d
(
i
,
j
)
=
=
k
]
∗
c
i
∗
c
j
=
∑
k
=
1
n
∑
i
=
1
⌊
n
k
⌋
∑
j
=
1
⌊
n
k
⌋
i
∗
j
∗
k
[
g
c
d
(
i
,
j
)
=
=
1
]
∗
c
i
k
∗
c
j
k
=
∑
k
=
1
n
∑
i
=
1
⌊
n
k
⌋
∑
j
=
1
⌊
n
k
⌋
i
∗
j
∗
k
∑
d
∣
g
c
d
(
i
,
j
)
μ
(
d
)
∗
c
i
k
∗
c
j
k
=
∑
k
=
1
n
∑
d
=
1
⌊
n
k
⌋
∑
i
=
1
⌊
n
k
d
⌋
∑
j
=
1
⌊
n
k
d
⌋
i
∗
j
∗
k
∗
d
2
∗
c
i
k
d
∗
c
j
k
d
∗
μ
(
d
)
=
∑
T
=
1
n
∑
i
=
1
⌊
n
T
⌋
∑
j
=
1
⌊
n
T
⌋
i
∗
j
∗
T
∗
c
i
T
∗
c
j
T
∑
d
∣
T
μ
(
d
)
∗
d
=
∑
T
=
1
n
T
∗
(
∑
i
=
1
⌊
n
T
⌋
i
∗
c
i
T
)
2
∑
d
∣
T
μ
(
d
)
∗
d
\sum_{i = 1}^n\sum_{j = 1}^nlcm(i,j) * c_i * c_j\\ =\sum_{i = 1}^n\sum_{j = 1}^n {i * j \over gcd(i,j)} * c_i * c_j\\ =\sum_{k = 1}^n\sum_{i = 1}^n\sum_{j = 1}^n{i * j \over k}[gcd(i,j) == k] * c_i * c_j\\ =\sum_{k = 1}^n\sum_{i = 1}^{\lfloor {n \over k} \rfloor}\sum_{j = 1}^{\lfloor {n \over k} \rfloor}i*j*k[gcd(i,j) == 1] * c_{ik} * c_{jk} \\ =\sum_{k = 1}^n\sum_{i = 1}^{\lfloor {n \over k} \rfloor}\sum_{j = 1}^{\lfloor {n \over k} \rfloor}i*j*k\sum_{d | gcd(i,j)}\mu(d) * c_{ik} * c_{jk} \\ =\sum_{k = 1}^n \sum_{d = 1}^{\lfloor {n \over k} \rfloor} \sum_{i = 1}^{\lfloor {n \over kd} \rfloor}\sum_{j = 1}^{\lfloor {n \over kd} \rfloor}i*j*k*d^2 *c_{ikd} * c_{jkd} * \mu(d) \\ =\sum_{T = 1}^n \sum_{i = 1}^{\lfloor {n \over T} \rfloor} \sum_{j = 1}^{\lfloor {n \over T} \rfloor}i*j*T*c_{iT}*c_{jT} \sum_{d|T}\mu(d)*d\\ =\sum_{T = 1}^n T *(\sum_{i = 1}^{\lfloor {n \over T} \rfloor} i * c_{iT})^2 \sum_{d|T}\mu(d)*d
i=1∑nj=1∑nlcm(i,j)∗ci∗cj=i=1∑nj=1∑ngcd(i,j)i∗j∗ci∗cj=k=1∑ni=1∑nj=1∑nki∗j[gcd(i,j)==k]∗ci∗cj=k=1∑ni=1∑⌊kn⌋j=1∑⌊kn⌋i∗j∗k[gcd(i,j)==1]∗cik∗cjk=k=1∑ni=1∑⌊kn⌋j=1∑⌊kn⌋i∗j∗kd∣gcd(i,j)∑μ(d)∗cik∗cjk=k=1∑nd=1∑⌊kn⌋i=1∑⌊kdn⌋j=1∑⌊kdn⌋i∗j∗k∗d2∗cikd∗cjkd∗μ(d)=T=1∑ni=1∑⌊Tn⌋j=1∑⌊Tn⌋i∗j∗T∗ciT∗cjTd∣T∑μ(d)∗d=T=1∑nT∗(i=1∑⌊Tn⌋i∗ciT)2d∣T∑μ(d)∗d
链接:https://www.luogu.com.cn/problem/P3911
AC代码:
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1e5 + 10;
bool vis[N];
int prime[N], cnt, mu[N], sum[N], x, maxx = 0, s[N];
void getMu() {
mu[1] = 1;
for(int i = 2; i < N; i++) {
if(!vis[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && i * prime[j] < N; j++) {
vis[i * prime[j]] = 1;
mu[i * prime[j]] = -mu[i];
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
}
}
for(int i = 1; i < N; i++) {
for(int j = 1; j * i < N; j++) {
sum[i * j] += mu[i] * i;
}
}
}
void solve() {
long long ans = 0;
for(int T = 1; T <= maxx; T++) {
long long sumt = 0;
for(int i = 1; i <= maxx / T; i++) {
sumt += 1ll * i * s[i * T];
}
ans += 1ll * T * sumt * sumt * sum[T];
}
printf("%lld\n", ans);
}
.
int main() {
getMu();
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++) {
scanf("%d", &x);
maxx = max(maxx, x);
s[x]++;
}
solve();
return 0;
}
4.能量采集
题目描述
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。
栋栋的植物种得非常整齐,一共有 n n n 列,每列有 m m m 棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标 ( x , y ) (x,y) (x,y) 来表示,其中 xx 的范围是 1 1 1 至 n n n , y y y 的范围是 1 1 1 至 m m m ,表示是在第 x x x 列的第 y y y 棵。
由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是 ( 0 , 0 ) (0,0) (0,0)。
能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有 k k k 棵植物,则能量的损失为 2 k + 1 2k+1 2k+1。例如,当能量汇集机器收集坐标为 ( 2 , 4 ) (2,4) (2,4) 的植物时,由于连接线段上存在一棵植物 ( 1 , 2 ) (1,2) (1,2) ,会产生 3 3 3 的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为 1 1 1 。现在要计算总的能量损失。
下面给出了一个能量采集的例子,其中 n = 5 n=5 n=5 , m = 4 m = 4 m=4,一共有 20 20 20 棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。
在这个例子中,总共产生了 36 36 36 的能量损失。
输入格式
一行两个整数 n , m n,m n,m。
输出格式
仅包含一个整数,表示总共产生的能量损失。
输入输出样例
输入#1
5 4
输出 #1
3 6
输入#2
3 4
输出#2
20
说明/提示
1 ≤ n , m ≤ 1 0 5 1 \leq n,m \leq 10^5 1≤n,m≤105
解题思路:
不难发现从 ( 0 , 0 ) (0,0) (0,0) 到 ( x , y ) (x,y) (x,y) 的一条线上不算上这两个点一共有 g c d ( x , y ) − 1 gcd(x,y) - 1 gcd(x,y)−1 个点
所以可以列个式子:
∑
i
=
1
n
∑
j
=
1
m
(
2
∗
g
c
d
(
i
,
j
)
−
1
)
=
2
∗
(
∑
i
=
1
n
∑
j
=
1
m
g
c
d
(
i
,
j
)
)
−
n
∗
m
\sum_{i = 1}^n \sum_{j = 1}^m(2 * gcd(i,j) - 1) \\ =2*(\sum_{i = 1}^n\sum_{j = 1}^mgcd(i,j)) \ \ - \ \ n*m
i=1∑nj=1∑m(2∗gcd(i,j)−1)=2∗(i=1∑nj=1∑mgcd(i,j)) − n∗m
所以这题就相当于求解这个和式
∑
i
=
1
n
∑
j
=
1
m
g
c
d
(
i
,
j
)
=
∑
k
=
1
m
i
n
(
n
,
m
)
∑
i
=
1
n
∑
j
=
1
m
k
[
g
c
d
(
i
,
j
)
=
=
k
]
=
∑
k
=
1
m
i
n
(
n
,
m
)
∑
i
=
1
⌊
n
k
⌋
∑
j
=
1
⌊
m
k
⌋
k
[
g
c
d
(
i
,
j
)
=
=
1
]
=
∑
k
=
1
m
i
n
(
n
,
m
)
∑
i
=
1
⌊
n
k
⌋
∑
j
=
1
⌊
m
k
⌋
k
∑
d
∣
g
c
d
(
i
,
j
)
μ
(
d
)
=
∑
k
=
1
m
i
n
(
n
,
m
)
∑
d
=
1
m
i
n
(
⌊
n
k
⌋
,
⌊
m
k
⌋
)
k
∗
μ
(
d
)
∗
⌊
n
k
d
⌋
∗
⌊
m
k
d
⌋
=
∑
T
=
1
m
i
n
(
n
,
m
)
⌊
n
T
⌋
∗
⌊
m
T
⌋
∗
∑
k
∣
T
μ
(
T
k
)
∗
k
\sum_{i = 1}^n\sum_{j = 1}^mgcd(i,j) \\ =\sum_{k = 1}^{min(n,m)}\sum_{i = 1}^n\sum_{j = 1}^mk[gcd(i,j) == k]\\ =\sum_{k = 1}^{min(n,m)}\sum_{i = 1}^{\lfloor {n \over k} \rfloor} \sum_{j = 1}^{\lfloor {m \over k} \rfloor}k[gcd(i,j) == 1]\\ =\sum_{k = 1}^{min(n,m)}\sum_{i = 1}^{\lfloor {n \over k} \rfloor} \sum_{j = 1}^{\lfloor {m \over k} \rfloor}k \sum_{d|gcd(i,j)}\mu(d)\\ =\sum_{k = 1}^{min(n,m)}\sum_{d = 1}^{min({\lfloor {n \over k}\rfloor}, {\lfloor {m \over k}\rfloor})}k*\mu(d)*{\lfloor {n \over kd}\rfloor}*{\lfloor {m \over kd}\rfloor}\\ =\sum_{T = 1}^{min(n,m)} {\lfloor {n \over T}\rfloor}*{\lfloor {m \over T}\rfloor} *\sum_{k|T}\mu({T \over k})*k
i=1∑nj=1∑mgcd(i,j)=k=1∑min(n,m)i=1∑nj=1∑mk[gcd(i,j)==k]=k=1∑min(n,m)i=1∑⌊kn⌋j=1∑⌊km⌋k[gcd(i,j)==1]=k=1∑min(n,m)i=1∑⌊kn⌋j=1∑⌊km⌋kd∣gcd(i,j)∑μ(d)=k=1∑min(n,m)d=1∑min(⌊kn⌋,⌊km⌋)k∗μ(d)∗⌊kdn⌋∗⌊kdm⌋=T=1∑min(n,m)⌊Tn⌋∗⌊Tm⌋∗k∣T∑μ(kT)∗k
链接:https://www.luogu.com.cn/problem/P1447
AC代码:
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = 1e6 + 10;
bool vis[N];
int prime[N], cnt, mu[N], sum[N];
void getMu() {
mu[1] = 1;
for(int i = 2; i < N; i++) {
if(!vis[i]) {
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && i * prime[j] < N; j++) {
vis[i * prime[j]] = 1;
mu[i * prime[j]] = -mu[i];
if(i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
}
}
for(int i = 1; i < N; i++) {
for(int j = 1; j * i < N; j++) {
sum[i * j] += mu[j] * i;
}
}
for(int i = 1; i < N; i++) {
sum[i] += sum[i - 1];
}
}
void solve(int n, int m) {
long long ans = 0;
for(int i = 1; i <= min(n, m); ) {
int r = min(n / (n / i), m / (m / i));
ans += 1ll * (sum[r] - sum[i - 1]) * (n / i) * (m / i);
i = r + 1;
}
printf("%lld\n", 2 * ans - 1ll * n * m);
}
int main() {
getMu();
int n, m;
scanf("%d%d", &n, &m);
solve(n, m);
return 0;
}
这样处理后面那个和式是可以过的,但是这题还可以再优化一下
首先 ∑ d ∣ m φ ( d ) = m ⇐ ⇒ φ ( m ) = ∑ d ∣ m μ ( d ) m d \sum_{d|m} \varphi(d)=m \Leftarrow \Rightarrow \varphi(m)=\sum_{d|m}\mu(d){m \over d} ∑d∣mφ(d)=m⇐⇒φ(m)=∑d∣mμ(d)dm
然后发现后面那个要预处理的和式转换一下就等于 φ ( T ) \varphi(T) φ(T) ,所以只要在素数筛里求 φ ( T ) \varphi(T) φ(T)就可以
再补充一下欧拉函数的知识( p p p 代表素数)
如果 n = p 1 k 1 ∗ p 2 k 2 ∗ . . . ∗ p m k m n = p_1^{k_1}*p_2^{k_2}*...*p_m^{k_m} n=p1k1∗p2k2∗...∗pmkm ,那么 φ ( n ) = φ ( p 1 k 1 ) ∗ φ ( p 2 k 2 ) ∗ . . . ∗ φ ( p m k m ) \varphi(n) = \varphi(p_1^{k_1})*\varphi(p_2^{k_2})*...*\varphi(p_m^{k_m}) φ(n)=φ(p1k1)∗φ(p2k2)∗...∗φ(pmkm), 因为欧拉函数是积性函数
还有 φ ( p k ) = p k − p k − 1 \varphi(p^k) = p^k-p^{k-1} φ(pk)=pk−pk−1
所以
φ
(
n
)
=
p
1
k
1
∗
p
2
k
2
∗
.
.
.
∗
p
m
k
m
∗
(
1
−
1
p
1
)
∗
(
1
−
1
p
2
)
∗
.
.
.
∗
(
1
−
1
p
m
)
=
n
∗
(
1
−
1
p
1
)
∗
(
1
−
1
p
2
)
∗
.
.
.
∗
(
1
−
1
p
m
)
\varphi(n) = p_1^{k_1} *p_2^{k_2}*...*p_m^{k_m}*(1-{1 \over p_1})*(1-{1 \over p_2}) *...*(1-{1 \over p_m})\\ =n*(1-{1 \over p_1})*(1-{1 \over p_2}) *...*(1-{1 \over p_m})
φ(n)=p1k1∗p2k2∗...∗pmkm∗(1−p11)∗(1−p21)∗...∗(1−pm1)=n∗(1−p11)∗(1−p21)∗...∗(1−pm1)
所以如果
p
p
p 是素数,并且
p
p
p 是
x
x
x 的因子
φ
(
p
∗
x
)
=
p
∗
x
∗
(
1
−
1
p
1
)
∗
(
1
−
1
p
2
)
∗
.
.
.
∗
(
1
−
1
p
m
)
=
φ
(
x
)
∗
p
\varphi(p * x) = p *x*(1-{1 \over p_1})*(1-{1 \over p_2}) *...*(1-{1 \over p_m})=\varphi(x)*p
φ(p∗x)=p∗x∗(1−p11)∗(1−p21)∗...∗(1−pm1)=φ(x)∗p
如果
p
p
p 不是
x
x
x 的因子, 那么
p
p
p 和
x
x
x 互素,则
φ
(
p
∗
x
)
=
φ
(
p
)
∗
φ
(
x
)
\varphi(p*x)=\varphi(p)*\varphi(x)
φ(p∗x)=φ(p)∗φ(x)
AC代码:
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
bool vis[N];
int prime[N], cnt, mu[N];
ll sum[N], phi[N];
void getMu() {
phi[1] = sum[1] = 1;
for(int i = 2; i < N; i++) {
if(!vis[i]) {
prime[cnt++] = i;
phi[i] = i - 1;
}
for(int j = 0; j < cnt && i * prime[j] < N; j++) {
vis[i * prime[j]] = 1;
if(i % prime[j] == 0) {
phi[prime[j] * i] = phi[i] * prime[j];
break;
}
phi[prime[j] * i] = phi[prime[j]] * phi[i];
}
sum[i] = sum[i - 1] + phi[i];
}
}
void solve(int n, int m) {
ll ans = 0;
for(int i = 1; i <= min(n, m); ) {
int r = min(n / (n / i), m / (m / i));
ans += 1ll * (sum[r] - sum[i - 1]) * (n / i) * (m / i);
i = r + 1;
}
printf("%lld\n", 2 * ans - 1ll * n * m);
}
int main() {
getMu();
int n, m;
scanf("%d%d", &n, &m);
solve(n, m);
return 0;
}