对于类似于用m种颜色染长度为n的环,旋转和对称是同一种方案,求本质不同的方案数。
这是基本的ploya定理的题。
1.首先考虑旋转
假设你每次从位置p旋转x个位置,总共需要k次旋转到原位置p点。
那么就有 p + kx ≡ p (% n);
即 kx ≡ 0 (% n);
又因为 kx % x = 0;
所以 循环节 k 的 最小值为 kx = (nx) / gcd(n , x);
即 k = n / gcd(n , x);
所以说每组的环的数量为gcd(n,x)个
又因为 x 可以为 0 ,1 , 2 。。。 n - 1 一共有 n 种 置换方式
2.对称
(1)奇数点的情况
对于奇数点对称轴一定经过一个点和它的对边。因此一共有 n 种 置换
环的数量是(n - 1) / 2 + 1 //因为这个点本身不换也是一个环 因此要加上
(2)偶数点的情况
对于偶数点,对称轴就分为点对点,边对边
点对点:一共有 n / 2 种 置换,环的数量是 (n - 2 ) / 2 + 2;
边对边:一共有 n / 2 种 置换,环的数量是 n / 2;
所以无论对于奇数点还是偶数点总的置换数都是2 * n;
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll qmod(ll a, ll b){
ll ans = 1;
while(b){
if(b & 1) ans = a * ans;
a = a * a;
b >>= 1;
}
return ans;
}
ll gcd(ll a, ll b){
return b == 0 ? a : gcd(b , a % b);
}
int main(){
int m , n;
while(~scanf("%d%d", &m, &n) && (n || m)){
ll ans = 0;
for(int i = 1; i <= n; i++){
ans += qmod(m , gcd(i , n));
}
if(n % 2 == 0) ans += (n / 2) * qmod(m , (n + 2) / 2) + (n / 2) * qmod(m , n / 2);
else ans += n * qmod(m , (n + 1) / 2);
ans /= 2 * n;
printf("%lld\n",ans);
}
return 0;
}